pCEP4 Mammalian Expression Vector - FAQs

View additional product information for pCEP4 Mammalian Expression Vector - FAQs (V04450)

21 product FAQs found

How do your episomal mammalian expression vectors bring about episomal replication? Can I use these vectors in any cell line?

Our episomal mammalian expression vectors (pCEP4 and pREP4) contain the Epstein Barr Virus (EBV) origin of replication (oriP) and the Epstein-Barr nuclear antigen (EBNA-1) for high-copy, transient, or stable episomal replication in human, primate, canine, and porcine cell lines. They do not bring about episomal expression in murine or rodent cell lines.

I performed stable selection but my antibiotic-resistant clones do not express my gene of interest. What could have gone wrong?

Here are possible causes and solutions:

Detection method may not be appropriate or sensitive enough:
- We recommend optimizing the detection protocol or finding more sensitive methods. If the protein is being detected by Coomassie/silver staining, we recommend doing a western blot for increased sensitivity. The presence of endogenous proteins in the lysate may obscure the protein of interest in a Coomassie/silver stain. If available, we recommend using a positive control for the western blot.
- Insufficient number of clones screened: Screen at least 20 clones.
- Inappropriate antibiotic concentration used for stable selection: Make sure the antibiotic kill curve was performed correctly. Since the potency of a given antibiotic depends upon cell type, serum, medium, and culture technique, the dose must be determined each time a stable selection is performed. Even the stable cell lines we offer may be more or less sensitive to the dose we recommend if the medium or serum is significantly different.
- Expression of gene product (even low level) may not be compatible with growth of the cell line: Use an inducible expression system.
- Negative clones may result from preferential linearization at a vector site critical for expression of the gene of interest: Linearize the vector at a site that is not critical for expression, such as within the bacterial resistance marker.

I used a mammalian expression vector but do not get any expression of my protein. Can you help me troubleshoot?

Here are possible causes and solutions:

- Try the control expression that is included in the kit
Possible detection problem:

- Detection of expressed protein may not be possible in a transient transfection, since the transfection efficiency may be too low for detection by methods that assess the entire transfected population. We recommend optimizing the transfection efficiency, doing stable selection, or using methods that permit examination of individual cells. You can also increase the level of expression by changing the promoter or cell type.
- Expression within the cell may be too low for the chosen detection method. We recommend optimizing the detection protocol or finding more sensitive methods. If the protein is being detected by Coomassie/silver staining, we recommend doing a western blot for increased sensitivity. The presence of endogenous proteins in the lysate may obscure the protein of interest in a Coomassie/silver stain. If available, we recommend using a positive control for the western blot. Protein might be degraded or truncated: Check on a Northern. Possible time-course issue: Since the expression of a protein over time will depend upon the nature of the protein, we always recommend doing a time course for expression. A pilot time-course assay will help to determine the optimal window for expression. Possible cloning issues: Verify clones by restriction digestion and/or sequencing.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I am using a mammalian expression vector that has the neomycin resistance gene. Can I use neomycin for stable selection in mammalian cells?

No; neomycin is toxic to mammalian cells. We recommend using Geneticin (a.k.a. G418 Sulfate), as it is a less toxic and very effective alternative for selection in mammalian cells.

Is it okay if my construct has an ATG that is upstream of the ATG in my gene of interest? Will it interfere with translation of my gene?

Translation initiation will occur at the first ATG encountered by the ribosome, although in the absence of a Kozak sequence, initiation will be relatively weak. Any insert downstream would express a fusion protein if it is in frame with this initial ATG, but levels of expressed protein are predicted to be low if there is a non-Kozak consensus sequence. If the vector contains a non-Kozak consensus ATG, we recommend that you clone your gene upstream of that ATG and include a Kozak sequence for optimal expression.

Do you offer a GFP-expressing mammalian expression vector that I can use as a control to monitor my transfection and expression?

We offer pJTI R4 Exp CMV EmGFP pA Vector, Cat. No. A14146, which you can use to monitor your transfection and expression.

I am working with a mouse cell line and would like to express my gene at high levels using one of your vectors with the CMV promoter. Do you foresee any problems with this approach?

The CMV promoter is known to be downregulated over time in mouse cell lines. Hence, we recommend using one of our non-CMV vectors, such as those with the EF1alpha or UbC promoter, for long-term expression in mouse cell lines.

Do I need to include a consensus Kozak sequence when I clone my gene of interest into one of your mammalian expression vectors?

The consensus Kozak sequence is A/G NNATGG, where the ATG indicates the initiation codon. Point mutations in the nucleotides surrounding the ATG have been shown to modulate translation efficiency. Although we make a general recommendation to include a Kozak consensus sequence, the necessity depends on the gene of interest and often, the ATG alone may be sufficient for efficient translation initiation. The best advice is to keep the native start site found in the cDNA unless one knows that it is not functionally ideal. If concerned about expression, it is advisable to test two constructs, one with the native start site and the other with a consensus Kozak. In general, all expression vectors that have an N-terminal fusion will already have an initiation site for translation.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

Do I need to include a ribosomal binding site (RBS/Shine Dalgarno sequence) or Kozak sequence when I clone my gene of interest?

ATG is often sufficient for efficient translation initiation although it depends upon the gene of interest. The best advice is to keep the native start site found in the cDNA unless one knows that it is not functionally ideal. If concerned about expression, it is advisable to test two constructs, one with the native start site and the other with a Shine Dalgarno sequence/RBS or consensus Kozak sequence (ACCAUGG), as the case may be. In general, all expression vectors that have an N-terminal fusion will already have a RBS or initiation site for translation.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

Is the TK promoter found upstream of the Hygromycin resistance gene in the pCEP4 vector full-length, and are there any other enhancers included? Where is the start of transcription?

Yes, the promoter is full-length and there are no additional enhancer elements present. The transcriptional start site has never been mapped, but it is assumed to be the same as the wild-type promoter.

Which cell types will allow episomal replication of pCEP4, pREP4, pREP7, pREP8, pREP9, or pREP10? What are their copy numbers in mammalian cells?

All of the mentioned episomal vectors can be maintained extra-chromosomally in human, primate, and canine cell lines. They will not replicate episomally in rodent cell lines (e.g. CHO, NIH-3T3). Copy number is dependent on cell size, size of the insert, and transfection efficiency. Typically, the general range is between 1 to 30 per cell.

Note: Only pCEP4 and pREP4 are still available for purchase from Thermo Fisher Scientific as of January 2012. The other vectors have been discontinued.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

What is the origin of the hygromycin resistance gene found in pCEP4, pREP4, pREP7, pREP10, and pEBVHis vectors?

The hygromycin resistance gene was obtained directly from E. coli. pCEP4, pMEP4, pREP4, pREP7, pREP10, and pEBVHis vectors have the same TK-driven hygromycin resistance gene.

Note: Only pCEP4 and pREP4 are still available for purchase from Thermo Fisher Scientific as of January 2012. The other vectors have been discontinued.

Can you tell me the difference between a Shine-Dalgarno sequence and a Kozak sequence?

Prokaryotic mRNAs contain a Shine-Dalgarno sequence, also known as a ribosome binding site (RBS), which is composed of the polypurine sequence AGGAGG located just 5’ of the AUG initiation codon. This sequence allows the message to bind efficiently to the ribosome due to its complementarity with the 3’-end of the 16S rRNA. Similarly, eukaryotic (and specifically mammalian) mRNA also contains sequence information important for efficient translation. However, this sequence, termed a Kozak sequence, is not a true ribosome binding site, but rather a translation initiation enhancer. The Kozak consensus sequence is ACCAUGG, where AUG is the initiation codon. A purine (A/G) in position -3 has a dominant effect; with a pyrimidine (C/T) in position -3, translation becomes more sensitive to changes in positions -1, -2, and +4. Expression levels can be reduced up to 95% when the -3 position is changed from a purine to pyrimidine. The +4 position has less influence on expression levels where approximately 50% reduction is seen. See the following references:

- Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283-292.
- Kozak, M. (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196, 947-950.
- Kozak, M. (1987) An analysis of 5´-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125-8148.
- Kozak, M. (1989) The scanning model for translation: An update. J. Cell Biol. 108, 229-241.
- Kozak, M. (1990) Evaluation of the fidelity of initiation of translation in reticulocyte lysates from commercial sources. Nucleic Acids Res. 18, 2828.

Note: The optimal Kozak sequence for Drosophila differs slightly, and yeast do not follow this rule at all. See the following references:

- Romanos, M.A., Scorer, C.A., Clare, J.J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423-488.
- Cavaneer, D.R. (1987) Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res. 15, 1353-1361.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

Where is the hygromycin gene from in pCEP4, pMEP4, pREP4, pREP7, pREP10, pEBVHis, and pRBK?

The hygromycin resistance gene in these vectors is driven by the TK (Thymidine Kinase) promoter and comes from E. coli.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

What is HAT?

HAT is a compete medium supplemented with 100 micromolar hypoxanthine, 0.4 micromolar aminopterin, 16 micromolar thymidine, and 3 micromolar glycine (HAT medium) is used when using selection vectors that encode for thymidine kinase (TK). For more information on this selection method, you can refer to Current Protocols in Molecular Biology ("Red Book") or the following reference:Littlefield, JW 1964 "Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants." Science 145:709-710.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

What is the promoter that drives the EBNA-1 gene?

The EBNA-1 gene in pCEP4 is expressed from a natural EBV promoter and TATA box. The promoter is not well defined, but if you BLAST the sequences upstream of the EBNA-1 ORF you will see that they line up with EBV genomic sequences.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

Where is the termination/polyA sequence for the EBNA-1 gene?

There is probably no termination/polyA for EBNA-1. There are only about 75 bases after the stop codon before the pUC sequence resumes with no obvious signal sequences.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I sequenced one of your vectors after PCR amplification and observed a difference from what is provided online (or in the manual). Should I be concerned?

Our vectors have not been completely sequenced. Your sequence data may differ when compared to what is provided. Known mutations that do not affect the function of the vector are annotated in public databases.

Are your vectors routinely sequenced?

No, our vectors are not routinely sequenced. Quality control and release criteria utilize other methods.

How was the reference sequence for your vectors created?

Sequences provided for our vectors have been compiled from information in sequence databases, published sequences, and other sources.

What is the consensus Kozak sequence and what is the function of the Kozak sequence?

Eukaryotic (and specifically mammalian) mRNA contains sequence information that is important for efficient translation. However, this sequence, termed a Kozak sequence, is not a true ribosome binding site, but rather a translation initiation enhancer. The Kozak consensus sequence is ACCAUGG, where AUG is the initiation codon. A purine (A/G) in position -3 has a dominant effect; with a pyrimidine (C/T) in position -3, translation becomes more sensitive to changes in positions -1, -2, and +4. Expression levels can be reduced up to 95% when the -3 position is changed from a purine to pyrimidine. The +4 position has less influence on expression levels where approximately 50% reduction is seen. See the following references:

Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283-292.
Kozak, M. (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196, 947-950.
Kozak, M. (1987) An analysis of 5´-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125-8148.
Kozak, M. (1989) The scanning model for translation: An update. J. Cell Biol. 108, 229-241.
Kozak, M. (1990) Evaluation of the fidelity of initiation of translation in reticulocyte lysates from commercial sources. Nucleic Acids Res. 18, 2828.

Note: The optimal Kozak sequence for Drosophila differs slightly, and yeast do not follow this rule at all. See the following references:

Romanos, M.A., Scorer, C.A., Clare, J.J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423-488.
Cavaneer, D.R. (1987) Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res. 15, 1353-1361.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.