Cellules compétentes de DH5α Subcloning Efficiency™
Cellules compétentes de DH5α Subcloning Efficiency™
Invitrogen™

Cellules compétentes de DH5α Subcloning Efficiency™

Les cellules compétentes Subcloning Efficiency> DH5α constituent une souche polyvalente de cellules chimiquement compétentes qui offrent une efficacité de transformationAfficher plus
Have Questions?
RéférenceQuantité
182650174 x 500 μl
Référence 18265017
Prix (EUR)
101,00
Each
Ajouter au panier
Quantité:
4 x 500 μl
Prix (EUR)
101,00
Each
Ajouter au panier
Les cellules compétentes Subcloning Efficiency> DH5α constituent une souche polyvalente de cellules chimiquement compétentes qui offrent une efficacité de transformation de plus de 1 x 106 cfu/µg d’ADN plasmidique. Efficacité du sous-clonage Lesα cellules compétentes DH5 constituent une solution économique pour les procédures de sous-clonage courantes ou toute application où l'ADN de départ ne limite pas.

Caractéristiques desα cellules compétentes DH5 d'efficacité de sous-clonage :

• Conçu pour une utilisation générale et quotidienne
• Contain genetic markers utiles pour des applications générales

Idéal pour des procédures de sous-clonage courantes
Subcloning Efficiency DH5α Les cellules compétentes sont recommandées pour le sous-clonage systématique de gènes dans des vecteurs plasmidiques mais ne conviennent pas à la génération de bibliothèques d'ADNc. Ces cellules économiques produisent >1 x 106 transformants/µg d'ADN de contrôle par µréaction de 50 litres.

Capacités de clonage flexibles
Lesα cellules compétentes DH5 à efficacité de sous-clonage contiennent les Marquages génétiques suivants, ce qui a pour résultat ces avantages :

Le lacZΔM15 pour le screening couleur bleu/blanc des colonies sur des plaques contenant du X-gal ou du Bluo-gal
recA1 assure une stabilité accrue des inserts et empêche
la recombinaison indésirable finA1 améliore le rendement et la qualité de l'ADN plasmidique préparé à partir
•α de cellules compétentes Miniprops DH5 pour la réplication des vecteurs M13mp, mais ne le prennent pas en charge Formation de plaques

Génotype : F- Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17(rk-, mk+) phoA supE44 thi-1 gyrA96 relA1 λ-
Usage exclusivement réservé à la recherche. Ne pas utiliser pour des procédures de diagnostic.
Spécifications
Résistance aux antibiotiques des bactériesNo
Sélection bleue / blancheOui
Clonage d’ADN méthyléNon
Clonage d’ADN instableNe convient pas au clonage d’ADN instable
Contient l’épisome FAbsence d’épisome F’
Compatibilité à haut débitNon compatible avec le haut débit (manuel)
Améliore la qualité des plasmidesOui
Préparation de l’ADN non méthyléNon adapté à la préparation de l’ADN non méthylé
Gamme de produitsDH5a, efficacité du sous-clonage
Type de produitCellule compétente
Quantité4 x 500 μl
Réduit la recombinaisonOui
Conditions d’expéditionGlace carbonique
Résistant au phage T1 (tonA)Non
Niveau d’efficacité de la transformationEfficacité du sous-clonage (10^6-10^7 cfu⁄ µg)
FormatTube
EspècesE. coli
Unit SizeEach
Contenu et stockage
Contenu :
Efficacité du sous-clonage des cellules compétentes DH5•α : 4 flacons, 500 µl chacun (2 ml au total)
• ADN pUC19 (100 pg/ul) : 1 flacon, 20 µl

Conserver les cellules compétentes à -80°C. Conserver l’ADN pUC19 à -20°C.

Foire aux questions (FAQ)

I am trying to clone an insert that is supposedly pretty toxic. I used DH5? and TOP10 cells for the transformation and got no colonies on the plate. Do you have any suggestions for me?

If the insert is potentially toxic to the host cells, here are some suggestions that you can try:

- After transforming TOP10 or DH5? cells, incubate at 25-30°C instead of 37°C. This will slow down the growth and will increase the chances of cloning a potentially toxic insert.
- Try using TOP10F' cells for the transformation, but do not add IPTG to the plates. These cells carry the lacIq repressor that represses expression from the lac promoter and so allows cloning of toxic genes. Keep in mind that in the absence of IPTG, blue-white screening cannot be performed.
- Try using Stbl2 cells for the transformation.

How do you recommend that I prepare my DNA for successful electroporation of E. coli?

For best results, DNA used in electroporation must have a very low ionic strength and a high resistance. A high-salt DNA sample may be purified by either ethanol precipitation or dialysis.

The following suggested protocols are for ligation reactions of 20ul. The volumes may be adjusted to suit the amount being prepared.

Purifying DNA by Precipitation: Add 5 to 10 ug of tRNA to a 20ul ligation reaction. Adjust the solution to 2.5 M in ammonium acetate using a 7.5 M ammonium acetate stock solution. Mix well. Add two volumes of 100 % ethanol. Centrifuge at 12,000 x g for 15 min at 4C. Remove the supernatant with a micropipet. Wash the pellet with 60ul of 70% ethanol. Centrifuge at 12,000 x g for 15 min at room temperature. Remove the supernatant with a micropipet. Air dry the pellet. Resuspend the DNA in 0.5X TE buffer [5 mM Tris-HCl, 0.5 mM EDTA (pH 7.5)] to a concentration of 10 ng/ul of DNA. Use 1 ul per transformation of 20 ul of cell suspension.

Purifying DNA by Microdialysis: Float a Millipore filter, type VS 0.025 um, on a pool of 0.5X TE buffer (or 10% glycerol) in a small plastic container. Place 20ul of the DNA solution as a drop on top of the filter. Incubate at room temperature for several hours. Withdraw the DNA drop from the filter and place it in a polypropylene microcentrifuge tube. Use 1ul of this DNA for each electrotransformation reaction.

You offer competent cells in Subcloning Efficiency, Library Efficiency and MAX Efficiency. How do these differ?

There are a few exceptions, but in general the difference is in guaranteed transformation efficiency as follows:

Subcloning Efficiency cells are guaranteed to produce at least 1.0 x 10E6 transformants per µg of transformed pUC19 or pUC18 supercoiled plasmid
Library Efficiency cells are guaranteed to produce at least 1.0 x 10E8 transformants per µg pUC19 or pUC18 DNA
MAX Efficiency cells are guaranteed to produce at least 1.0 x 10E9 transformants per µg pUC19 or pUC18 DNA

When should DMSO, formamide, glycerol and other cosolvents be used in PCR?

Cosolvents may be used when there is a failure of amplification, either because the template contains stable hairpin-loops or the region of amplification is GC-rich. Keep in mind that all of these cosolvents have the effect of lowering enzyme activity, which will decrease amplification yield. For more information see P Landre et al (1995). The use of co-solvents to enhance amplification by the polymerase chain reaction. In: PCR Strategies, edited by MA Innis, DH Gelfand, JJ Sninsky. Academic Press, San Diego, CA, pp. 3-16.

Additionally, when amplifying very long PCR fragments (greater than 5 kb) the use of cosolvents is often recommended to help compensate for the increased melting temperature of these fragments.

Find additional tips, troubleshooting help, and resources within our PCR and cDNA Synthesis Support Center.

Citations et références (7)

Citations et références
Abstract
Modified gateway system for double shRNA expression and Cre/lox based gene expression.
Authors:Radulovich N, Leung L, Tsao MS,
Journal:BMC Biotechnol
PubMed ID:21418658
'The growing need for functional studies of genes has set the stage for the development of versatile tools for genetic manipulations. Aiming to provide tools for high throughput analysis of gene functions, we have developed a modified short hairpin RNA (shRNA) and gene expression system based on Gateway Technology. The ... More
Multicolor and electron microscopic imaging of connexin trafficking.
Authors: Gaietta Guido; Deerinck Thomas J; Adams Stephen R; Bouwer James; Tour Oded; Laird Dale W; Sosinsky Gina E; Tsien Roger Y; Ellisman Mark H;
Journal:Science
PubMed ID:11964472
'Recombinant proteins containing tetracysteine tags can be successively labeled in living cells with different colors of biarsenical fluorophores so that older and younger protein molecules can be sharply distinguished by both fluorescence and electron microscopy. Here we used this approach to show that newly synthesized connexin43 was transported predominantly in ... More
Studies of the properties of human origin recognition complex and its Walker A motif mutants.
Authors:Giordano-Coltart J, Ying CY, Gautier J, Hurwitz J,
Journal:Proc Natl Acad Sci U S A
PubMed ID:15618391
The eukaryotic six-subunit origin recognition complex (ORC) governs the initiation site of DNA replication and formation of the prereplication complex. In this report we describe the isolation of the wild-type Homo sapiens (Hs)ORC and variants containing a Walker A motif mutation in the Orc1, Orc4, or Orc5 subunit using the ... More
Requirement for either a host- or pectin-induced pectate lyase for infection of pisum sativum by nectriahematococca.
Authors:Rogers LM, Kim YK, Guo W, Gonzalez-Candelas L, Li D, Kolattukudy PE
Journal:Proc Natl Acad Sci U S A
PubMed ID:10931947
Fungal pathogens usually have multiple genes that encode extracellular hydrolytic enzymes that may degrade the physical barriers in their hosts during the invasion process. Nectria hematococca, a plant pathogen, has two inducible pectate lyase (PL) genes (pel) encoding PL that can help degrade the carbohydrate barrier in the host. pelA ... More
UDP-glucuronate Decarboxylase, a Key Enzyme in Proteoglycan Synthesis. CLONING, CHARACTERIZATION, AND LOCALIZATION.
Authors: Moriarity John L; Hurt K Joseph; Resnick Adam C; Storm Phillip B; Laroy Wouter; Schnaar Ronald L; Snyder Solomon H;
Journal:J Biol Chem
PubMed ID:11877387
UDP-glucuronate decarboxylase (UGD) catalyzes the formation of UDP-xylose from UDP-glucuronate. UDP-xylose is then used to initiate glycosaminoglycan biosynthesis on the core protein of proteoglycans. In a yeast two-hybrid screen with the protein kinase Akt (protein kinase B), we detected interactions with a novel sequence, which we cloned and expressed. The ... More