LanthaScreen™ TR-FRET Androgen Receptor Coactivator Assay Kit
LanthaScreen™ TR-FRET Androgen Receptor Coactivator Assay Kit

LanthaScreen™ TR-FRET Androgen Receptor Coactivator Assay Kit

Le kit de dosage de coactivateur de récepteur d’androgène TR-FRET LanthaScreen™ offre une méthode sensible et robuste pour le criblageAfficher plus
Have Questions?
RéférenceQuantité
A15878800 dosages de 20 μl
Référence A15878
Prix (EUR)
1 864,00
Each
Ajouter au panier
Quantité:
800 dosages de 20 μl
Prix (EUR)
1 864,00
Each
Ajouter au panier
Le kit de dosage de coactivateur de récepteur d’androgène TR-FRET LanthaScreen™ offre une méthode sensible et robuste pour le criblage à haut débit des ligands de récepteur d’androgène potentiel (AR) en tant qu’agonistes du recrutement de coactivateurs ou antagonistes du recrutement de coactivateurs dépendants des agonistes. Dans les modes agoniste et antagoniste, le dosage homogène en mélange et en lecture utilise un domaine de liaison au ligand AR de rat (AR-LBD) marqué à l’hexahistidine et la glutathion-S-transférase (GST) (également disponible séparément), un anticorps anti-GST marqué au terbium (Tb) et un peptide coactivateur marqué à la fluorescéine.

Mode agoniste
Lors de l’exécution du test de coactivateur de récepteur d’androgène LanthaScreen TR-FRET en mode agoniste (pour identifier les composés agonistes), l’AR-LBD est ajouté aux composés de test de ligand, suivi d’un mélange du peptide de coactivateur fluorescéine et de l’anticorps anti-GST marqué au Tb. Après incubation à température ambiante, le rapport d’émission TR-FRET 520:495 nm est calculé et utilisé pour déterminer la EC50 à partir d’une courbe de réponse du dosage du composé. Ce ligand EC50 est une valeur composite représentant la quantité de ligands nécessaire pour se lier au récepteur, effectuer un changement conformationnel et recruter le peptide coactivateur (voir figure).

Mode antagoniste
Lors de l’exécution du test de coactivateur de récepteur d’androgène LanthaScreen TR-FRET en mode antagoniste (pour identifier les composés antagonistes), l’AR-LBD est ajouté aux composés de test de ligand, suivi d’un mélange d’agoniste DHT, de peptide de coactivateur de fluorescéine et d’anticorps anti-GST marqué au Tb. La concentration d’agoniste DHT utilisée dans ce mode est la concentration EC80 telle que déterminée par la première exécution du dosage en mode agoniste. Un exemple de données produites en mode antagoniste est illustré dans la figure ci-dessous.
Usage exclusivement réservé à la recherche. Ne pas utiliser pour des procédures de diagnostic.
Spécifications
À utiliser avec (application)Test d’interaction co-factorielle, dosage des récepteurs nucléaires
LigandAR
No. of Assays800 x 20 μL assays
Type de produitKit de dosage du coactivateur de récepteur d’androgène TR-FRET
Quantité800 dosages de 20 μl
Gamme de produitsLanthaScreen
Unit SizeEach
Contenu et stockage
1 tube AR Ligand Binding Domain Recombinant Protein (store at -68 to -85°C)
1 tube Peptide (store at -5 to -30°C)
2 bottles TR-FRET Buffer (store at -5 to -30°C)
1 tube Tb-Anti-GST Ab (store at -5 to -30°C)
1 tube of DTT (store at -5 to -30°C)

Foire aux questions (FAQ)

I'm using the TaqMan hPSC Scorecard Panel. How do I load the samples onto a 384-well plate if I only have a 16-channel pipette?

The tips of most 16-channel pipettes will align with every well in each column of the plate. However, if your cDNA reactions were set up in 8 wells of a 96-well plate or in 8-well PCR strips, additional sample will be required to compensate for the dead volume. When you insert 2 tips of the 16-channel pipette into 1 well, the tips can't reach the bottom of the well, resulting in a need for additional dead volume.

Find additional tips, troubleshooting help, and resources within our Real-Time PCR and Digital PCR Applications Support Center

How does the LanthaScreen technology compare to other TR-FRET assay formats?

We performed a comparison between the LanthaScreen assay and other commercially available TR-FRET assays from 2 different suppliers for the PKC kinase target. Our data revealed that the assays performed comparably, but that the LanthaScreen assay was simpler to optimize and contained fewer components that required optimization. The LanthaScreen assay is a two component system, whereas the other assay formats utilize a trimolecular mechanism which is more time consuming to optimize and has added costs.

For my kinase assay, can I pre-mix the Tb-Ab and EDTA so that I can stop the kinase assay and begin detection with a single reagent addition?

Yes, this is possible depending on the concentrations of reagents used and the time for which they are mixed. We recommend developing and optimizing the assay by using separate reagent additions, because this method will work under the widest range of conditions. Once the assay is optimized, the performance of the assay using pre-mixed antibody and EDTA can be evaluated. We have successfully developed robust assays in which the antibody and EDTA were pre-mixed and then stored overnight at 4 degrees C prior to use the following day. A loss of signal intensity was observed in this case, however, by using the ratiometric readout, this effect was minimal.

Are the LanthaScreen reagents stable to interference from Mg2+, Mn2+, and EDTA?

The chelate is completely stable to Mg2+. The amount of Mn2+ or EDTA that the chelate can tolerate depends largely on how long they are mixed together and the combination of additives used in the reaction. If a reaction requires either Mg2+ or Mn2+ for activation, it is best to stop the reaction by adding an equimolar amount (or slight excess) of EDTA to chelate the metal ions present. This will then essentially eliminate any interference on the terbium chelate by EDTA or Mn2+. Regardless, when LanthaScreen assays are performed using a ratiometric readout (division of the acceptor signal by the donor signal), any interference caused by Mn2+ or EDTA is largely cancelled out.

What is the optimal and/or maximum distance for a Tb-fluorescein pair?

The Förster radius, the distance at which energy transfer efficiency is half-maximal, is around 50-angstroms for the terbiumÆ fluorescein pair. However, the Förster radius does not give a complete indication of energy transfer efficiency when using long lifetime fluorophores such as terbium chelates. When using terbium chelates, energy transfer efficiency is determined by the distance of closest approach between the donor and acceptor during the excited state lifetime of the donor. In many assay systems, such as those designed using antibodies or peptides, there is a large degree of conformational freedom that allows the donor and acceptor to approach one another, effectively enhancing the FRET signal. Additionally, it is important to note that as the donor/acceptor pair approach one another and the efficiency of energy transfer increases, the fluorescent lifetime decreases to a comparable extent. From a practical standpoint, this means that when energy transfer is extremely efficient, FRET cannot be measured in time-resolved mode (because the energy transfer is complete before the measurement is made). This is another reason why TR-FRET assays based around terbium-labeled antibodies or streptavidin perform so well, because there exist a range of donor/acceptor distances, several of which are optimal for measuring FRET.