E. coli chimiquement compétentes One Shot™ BL21 Star™ (DE3)
<i>E. coli</i> chimiquement compétentes One Shot&trade; BL21 Star&trade; (DE3)
Invitrogen™

E. coli chimiquement compétentes One Shot™ BL21 Star™ (DE3)

Les cellules chimiquement compétentes One Shot™ BL21 Star™ (DE3) E. coli sont destinées aux applications nécessitant une expression de hautAfficher plus
Have Questions?
RéférenceQuantité
C60100321 x 50 μl/tube
Référence C601003
Prix (EUR)
442,00
Each
Ajouter au panier
Quantité:
21 x 50 μl/tube
Prix (EUR)
442,00
Each
Ajouter au panier
Les cellules chimiquement compétentes One Shot™ BL21 Star™ (DE3) E. coli sont destinées aux applications nécessitant une expression de haut niveau des protéines recombinantes non toxiques à partir d’un faible nombre de copies, des systèmes d’expression basés sur le promoteur T7 (p. ex. vecteurs pET Champion™). Les cellules chimiquement compétentes One Shot™ BL21 Star™ (DE3) ont une efficacité de transformation de 1 x 108 cfu/µg d’ADN plasmidique. Caractéristiques des cellules One Shot™ BL21 Star™ :

• Contiennent un génotype qui favorise une stabilité élevée de l'ARNm et un rendement protéique
• Optimisé pour une utilisation avec un faible nombre de copies, les plasmides basés sur le promoteur T7
• fournis dans un tube unique, le—modèle Forma à usage unique permet de réaliser toutes les étapes de transformation dans le même tube, Ce qui contribue à gagner du temps et à prévenir la contamination

L'expression améliorée des protéines recombinantes non toxiques
Les™™ cellules One Shot BL21 Star (DE3) contiennent le lysogène DE3 qui porte le gène de l'ARN polymérase T7 sous contrôle du promoteur Lac UV5. IPTG est requis pour induire l’expression. Cette souche offre également une meilleure stabilité d’ARNm compte tenu d’une mutation dans le gène RNaseE (rne131) qui réduit les niveaux de RNase endogènes et la dégradation d’ARNm, augmentant ainsi la stabilité des transcripts d’ARNm et le rendement des protéines. L’expression protéique est encore améliorée par l’absence de protéases lon et de membrane externe (OmpT), qui réduit la dégradation des protéines hétérologues.

Remarque : Les souches BL21 Star™ comportent une expression basale de gènes hétérologues supérieure aux souches BL21 compte tenu de la stabilité accrue de l’ARNm. Par conséquent, ces souches peuvent ne pas être utiles pour l'expression de gènes toxiques.

Génotype :F-ompT hsdSB (rB-, mB-) GAldcmrne131 (DE3)

Trouvez la souche et le format dont vous avez besoin
Nous proposons également de nombreuses autres souches et formats de cellules chimiquement compétentes et de cellules électrocompétentes pour répondre à vos besoins spécifiques de transformation. Pour l’expression des protéines toxiques, pensez aux cellules chimiquement compétentes BL21-AI™ One Shot™ E. coli.
Usage exclusivement réservé à la recherche. Ne pas utiliser pour des procédures de diagnostic.
Spécifications
Résistance aux antibiotiques des bactériesNo
Sélection bleue / blancheNon
Clonage d’ADN méthyléNon
Contient l’épisome FAbsence d’épisome F’
Compatibilité à haut débitNon compatible avec le haut débit (manuel)
Améliore la qualité des plasmidesNon
Improves Protein StabilityYes (lon, ompT)
Improves RNA StabilityYes (rne131)
Préparation de l’ADN non méthyléYes (dcm)
Gamme de produitsOne Shot
Type de produitCellule compétente
Quantité21 x 50 μl/tube
Réduit la recombinaisonNon
Conditions d’expéditionDry Ice
Résistant au phage T1 (tonA)Non
Toxic ProteinsNo
Niveau d’efficacité de la transformationEfficacité moyenne (10^8-10^9 cfu⁄µg)
FormatTube
AccélérateurT7
EspècesE. coli
Unit SizeEach
Contenu et stockage
Contenu :
• E.™™ coli One Shot BL21 Star (DE3) : 20 flacons, 50 µl chacun (1 ml au total)
• ADN pUC19 (10 pg/ul) : 1 flacon, 50 µl
• Milieu S.O.C. : 1 flacon, 6 ml

Cellules compétentes à conserver à -80°C. Conserver l’ADN pUC19 à -20°C. Conserver le milieu S.O.C à 4°C ou à température ambiante.

Foire aux questions (FAQ)

My gene of interest is toxic to bacterial cells. Are there any precautions you can suggest?

Several precautions may be taken to prevent problems resulting from basal level expression of a toxic gene of interest. These methods all assume that the T7-based or Champion-based expression plasmid has been correctly designed and created.

- Propagate and maintain your expression plasmid in a strain that does not contain T7 RNA polymerase (i.e., DH5α).
- If using BL21 (DE3) cells, try growing cells at room temperature rather than 37 degrees C for 24-48 hr.
- Perform a fresh transformation using a tightly regulated E. coli strain, such as BL21-AI cells.
- After following the transformation protocol, plate the transformation reaction on LB plates containing 100 µg/mL ampicillin and 0.1% glucose. The presence of glucose represses basal expression of T7 RNA polymerase.
- Following transformation of BL21-AI cells, pick 3 or 4 transformants and inoculate directly into fresh LB medium containing 100 µg/mL ampicillin or 50 µg/mL carbenicillin (and 0.1% glucose, if desired). When the culture reaches an OD600 of 0.4, induce expression of the recombinant protein by adding L-arabinose to a final concentration of 0.2%.
- When performing expression experiments, supplement the growth medium with 0.1% glucose in addition to 0.2% arabinose.
- Try a regulated bacterial expression system such as our pBAD system.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm trying to express my protein using a bacterial expression system. How do I know if I'm seeing degradation of my protein or if what I’m seeing is codon usage bias?

Typically, if you see 1-2 dominant bands, translation stopped prematurely due to codon usage bias. With degradation, you usually see a ladder of bands. With degradation, you can try using a protease inhibitor and add it to the lysis buffer to help prevent degradation. If degradation is the issue, a time point experiment can be done to determine the best time to harvest the cells.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm trying to express my protein using a bacterial expression system and am getting inclusion bodies. What should I do?

If you are having a solubility issue, try to decrease the temperature or decrease the amount of IPTG used for induction. You can also try a different, more stringent cell strain for expression. Adding 1% glucose to the bacterial culture medium during expression can also help.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm getting low protein yield from my bacterial expression system. What can I do to improve this?

- Inoculate from fresh bacterial cultures, since higher protein yields are generally obtained from a fresh bacterial colony.

- Check the codon usage in the recombinant protein sequence for infrequently used codons. Replacing the rare codons with more commonly used codons can significantly increase expression levels. For example, the arginine codons AGG and AGA are used infrequently by E. coli, so the level of tRNAs for these codons is low.

- Add protease inhibitors, such as PMSF, to buffers during protein purification. Use freshly made PMSF, since PMSF loses effectiveness within 30 min of dilution into an aqueous solution.

- If you are using ampicillin for selection in your expression experiments, you may be experiencing plasmid instability due to the absence of selective conditions. This occurs as the ampicillin is destroyed by β-lactamase or hydrolyzed under the acidic media conditions generated by bacterial metabolism. You may want to substitute carbenicillin for ampicillin in your transformation and expression experiments.

- The recombinant protein may be toxic to bacterial cells. Try a tighter regulation system for competent cell expression such as BL21-AI. You may also consider trying a different expression system such as the pBAD system.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

My cells are growing very slowly, and I'm not getting any protein expression from my baterial expression system. What can I do to fix this?

This typically occurs when your gene of interest is toxic. Try using a tighter regulation system, such as BL21 (DE3) (pLysS) or BL21 (DE3) (pLysE), or BL21(AI).

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

Citations et références (10)

Citations et références
Abstract
Systematic cloning of Treponema pallidum open reading frames for protein expression and antigen discovery.
Authors:McKevitt M, Patel K, Smajs D, Marsh M, McLoughlin M, Norris SJ, Weinstock GM, Palzkill T,
Journal:Genome Res
PubMed ID:12805273
'A topoisomerase-based method was used to clone PCR products encoding 991 of the 1041 open reading frames identified in the genome sequence of the bacterium that causes syphilis, Treponema pallidum subsp. pallidum. Cloning the open reading frames into the univector plasmid system permitted the rapid conversion of the original clone ... More
Human DNA polymerase N (POLN) is a low fidelity enzyme capable of error-free bypass of 5S-thymine glycol.
Authors:Takata K, Shimizu T, Iwai S, Wood RD,
Journal:J Biol Chem
PubMed ID:16787914
'Human DNA polymerase N (POLN or pol nu) is the most recently discovered nuclear DNA polymerase in the human genome. It is an A-family DNA polymerase related to Escherichia coli pol I, human POLQ, and Drosophila Mus308. We report the first purification of the recombinant enzyme and examination of its ... More
ATP stimulates signal recognition particle (SRP)/FtsY-supported protein integration in chloroplasts.
Authors: Yuan Jianguo; Kight Alicia; Goforth Robyn L; Moore Misty; Peterson Eric C; Sakon Joshua; Henry Ralph;
Journal:J Biol Chem
PubMed ID:12105232
'The signal recognition particle (SRP) and its receptor (FtsY in prokaryotes) are essential for cotranslational protein targeting to the endoplasmic reticulum in eukaryotes and the cytoplasmic membrane in prokaryotes. An SRP/FtsY-like protein targeting/integration pathway in chloroplasts mediates the posttranslational integration of the light-harvesting chlorophyll a/b-binding protein (LHCP) into thylakoid membranes. ... More
Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system.
Authors:Studier FW
Journal:J Mol Biol
PubMed ID:2023259
'Bacteriophage T7 lysozyme, a natural inhibitor of T7 RNA polymerase, can reduce basal activity from an inducible gene for T7 RNA polymerase and allow relatively toxic genes to be established in the same cell under control of a T7 promoter. Low levels of T7 lysozyme supplied by plasmids pLysS or ... More
Structural mechanism for the carriage and release of thyroxine in the blood.
Authors:Zhou A, Wei Z, Read RJ, Carrell RW,
Journal:Proc Natl Acad Sci U S A
PubMed ID:16938877
'The hormones that most directly control tissue activities in health and disease are delivered by two noninhibitory members of the serpin family of protease inhibitors, thyroxine-binding globulin (TBG) and corticosteroid-binding globulin. The structure of TBG bound to tetra-iodo thyroxine, solved here at 2.8 A, shows how the thyroxine is carried ... More