Dextran, Rhodamine B, 10,000 MW, Neutral
Dextran, Rhodamine B, 10,000 MW, Neutral
Invitrogen™

Dextran, Rhodamine B, 10,000 MW, Neutral

Les dextranes marqués sont des polysaccharides hydrophiles qui sont le plus couramment utilisés dans des études de microscopie pour surveillerAfficher plus
Have Questions?
RéférenceQuantité
D182425 mg
Référence D1824
Prix (EUR)
407,00
Each
Ajouter au panier
Quantité:
25 mg
Prix (EUR)
407,00
Each
Ajouter au panier
Les dextranes marqués sont des polysaccharides hydrophiles qui sont le plus couramment utilisés dans des études de microscopie pour surveiller la division cellulaire, suivre le mouvement des cellules vivantes et établir des rapports sur les propriétés hydrodynamiques de la matrice cytoplasmique. Le dextrane marqué est couramment introduit dans les cellules par micro-injection.

Besoin d’un spectre d’émission différent ou d’un suivi plus long ? Consultez nos autres produits de suivi de cellules de mammifères.

Spécifications du dextrane :

Marquage (Ex/Em) : Rhodamine B (570/590)
Taille : 10 000 MW
Charge : Zwitterionique
Fixable : Non fixable

Normes de fabrication strictes de Molecular Probes™ Dextranes
Nous proposons plus de 50 conjugués de dextrane fluorescents et biotinylés dans plusieurs gammes de poids moléculaire. Les dextranes sont des polysaccharides hydrophiles caractérisés par leur poids moléculaire de modéré à élevé, une bonne hydrosolubilité et une faible toxicité. Ils présentent également une faible immunogénicité. Les dextranes sont biologiquement inertes en raison de leurs liaisons poly-(α-D-1,6-glucose) peu communes, qui les rendent résistantes au clivage par la plupart des glycosidases cellulaires endogènes.

Dans la plupart des cas, les dextranes fluorescentes Molecular Probes™ sont beaucoup plus brillantes et ont une charge négative plus élevée que les dextranes disponibles auprès d’autres sources. De plus, nous utilisons des méthodes rigoureuses pour éliminer le plus de colorants non conjugués possible, puis doser nos conjugués de dextrane par chromatographie sur couche mince pour assurer l’absence de contaminants à faible poids moléculaire.

Une large sélection de substituants et de poids moléculaires
Les dextranes Molecular Probes™ sont conjugués à la biotine ou à une grande variété de fluorophores, dont sept de nos colorants Alexa Fluor™ (Conjugués de dextrane Molecular Probes–Tableau 14.4) et sont disponibles dans les poids moléculaires nominaux suivants (MW) : 3 000 ; 10 000 ; 40 000 ; 70 000 ; 500 000 ; et 2 000 000 daltons.

Charge nette et fixabilité du dextrane
Nous utilisons le couplage succinimidyle de nos colorants à la molécule de dextrane, ce qui, dans la plupart des cas, produit un dextrane neutre ou anionique. La réaction utilisée pour produire les dextranes Rhodamine Green™ et Alexa Fluor 488 génère un produit final neutre, anionique ou cationique. Les dextranes Alexa Fluor, Cascade Blue, jaune lucifer, fluorescéine et Oregon Green sont intrinsèquement anioniques, tandis que les dextranes marqués avec de la rhodamine B zwitterionique, de la tétraméthylrhodamine et du Texas Red™ sont essentiellement neutres. Pour produire des dextranes plus fortement anioniques, nous avons développé une procédure exclusive pour ajouter des groupes chargés négativement aux portoirs de dextranes ; ces produits sont désignés sous le terme de dextranes “polyanioniques” .

Certaines applications nécessitent que le traceur de dextrane soit traité avec du formaldéhyde ou du glutaraldéhyde pour une analyse ultérieure. Pour ces applications, nous offrons des versions “fixables par lysine” de la plupart de nos conjugués de dextranes de fluorophores ou de biotine. Ces dextranes possèdent des résidus de lysine liés de manière covalente qui permettent aux traceurs de dextrane d’être conjugués à des biomolécules environnantes par fixation médiée par aldéhyde pour détection subséquente par des techniques immunohistochimiques et ultrastructurelles. Nous avons également montré que tous nos conjugués de dextrane Alexa Fluor de 10 000 MW pouvaient être fixés avec des fixateurs à base d’aldéhyde.

Applications clés qui utilisent des dextranes marqués
Il existe une multitude de citations qui décrivent l’utilisation de dextranes marqués. Certaines des utilisations les plus courantes incluent :

Traçage neuronal (antérograde et rétrograde) dans les cellules vivantes
Traçage de lignées cellulaires dans les cellules vivantes
Traçage neuroanatomique
Examen des communications intercellulaires (par exemple, dans les jonctions lacunaires, pendant la cicatrisation des plaies, et pendant le développement embryonnaire)
Étude de la perméabilité vasculaire et de l’intégrité de la barrière hémato–encéphalique
Suivi de l’endocytose
Surveillance de l’acidification (certains conjugués de colorant–dextrane sont sensibles au pH)
Étude des propriétés hydrodynamiques de la matrice cytoplasmique

À des fins de recherche uniquement. Non destiné à des fins thérapeutiques ou diagnostiques humaines ou animales.
Usage exclusivement réservé à la recherche. Ne pas utiliser pour des procédures de diagnostic.
Spécifications
Marqueur ou colorantColorants classiques
Type de produitDextrane
Quantité25 mg
Conditions d’expéditionTempérature ambiante
Excitation/Emission570/590 nm
Gamme de produitsInvitrogen
Unit SizeEach
Contenu et stockage
Conservez au congélateur (entre -5 et -30°C) à l’abri de la lumière.

Foire aux questions (FAQ)

What is the excitation and emission wavelength for rhodamine?

Rhodamine is a generic term for a wide variety of cationic dyes whose fluorescence emission can range from green, orange to red. The table below lists the excitation and emission maxima (nm), as well as molar extinction coefficients (“EC”; cm-1 M-1), for various rhodamine dyes (data derived with dye dissolved in methanol).

Dye Excitation Emission EC
Rhodamine B 568 583 88,000
Rhodamine 123 507 529 101,000
Rhodamine 110 499 521 92,000
Rhodamine 6G 528 551 105,000
XRITC 572 596 92,000


Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations et références (23)

Citations et références
Abstract
Viscoelastic response of fibroblasts to tension transmitted through adherens junctions.
Authors:Ragsdale GK, Phelps J, Luby-Phelps K
Journal:Biophys J
PubMed ID:9370474
'Cytoplasmic deformation was monitored by observing the displacements of 200-nm green fluorescent beads microinjected into the cytoplasm of Swiss 3T3 fibroblasts. We noted a novel protrusion of nonruffling cell margins that was accompanied by axial flow of beads and cytoplasmic vesicles as far as 50 microm behind the protruding plasma ... More
Five-parameter fluorescence imaging: wound healing of living Swiss 3T3 cells.
Authors:DeBiasio R, Bright GR, Ernst LA, Waggoner AS, Taylor DL
Journal:J Cell Biol
PubMed ID:2444600
'Cellular functions involve the temporal and spatial interplay of ions, metabolites, macromolecules, and organelles. To define the mechanisms responsible for completing cellular functions, we used methods that can yield both temporal and spatial information on multiple physiological parameters and chemical components in the same cell. We demonstrated that the combined ... More
Confocal microscopy of intracellular calcium dynamics during fertilization.
Authors:Stricker SA
Journal:Biotechniques
PubMed ID:10997262
Calcium and endoplasmic reticulum dynamics during oocyte maturation and fertilization in the marine worm Cerebratulus lacteus.
Authors:Stricker SA, Silva R, Smythe T
Journal:Dev Biol
PubMed ID:9808782
'To monitor calcium and endoplasmic reticulum (ER) dynamics during oocyte maturation and fertilization, oocytes of the marine worm Cerebratulus lacteus were injected with the calcium-sensitive indicator calcium green dextran and/or the ER-specific probe "DiI." Based on time-lapse confocal imaging of such specimens, prophase-arrested immature oocytes failed to develop normally after ... More
Distinct roles of TIR and non-TIR regions in the subcellular localization and signaling properties of MyD88.
Authors:Nishiya T, Kajita E, Horinouchi T, Nishimoto A, Miwa S,
Journal:FEBS Lett
PubMed ID:17583698
MyD88 is a cytoplasmic adaptor protein that is critical for Toll-like receptor (TLR) signaling. The subcellular localization of MyD88 is characterized as large condensed forms in the cytoplasm. The mechanism and significance of this localization with respect to the signaling function, however, are currently unknown. Here, we demonstrate that MyD88 ... More