LanthaScreen™ TR-FRET PPAR gamma Coactivator Assay Kit, goat
Product Image

LanthaScreen™ TR-FRET PPAR gamma Coactivator Assay Kit, goat

Ce kit contient l’anticorps de chèvre anti-GST marqué au Tb ; les autres composants du kit sont les mêmes queAfficher plus
Have Questions?
RéférenceQuantité
PV4548800 dosages de 20 μl
Référence PV4548
Prix (EUR)
1 910,00
Each
Ajouter au panier
Quantité:
800 dosages de 20 μl
Prix (EUR)
1 910,00
Each
Ajouter au panier
Ce kit contient l’anticorps de chèvre anti-GST marqué au Tb ; les autres composants du kit sont les mêmes que pour le kit A15126 :

Le kit de dosage de coactivateur LanthaScreen™ TR-FRET PPAR gamma offre une méthode sensible et robuste pour le criblage à haut débit (PPAR) des ligands potentiels de PPAR gamma en tant qu’agonistes ou antagonistes du recrutement de coactivateurs dépendants des ligands. Le kit utilise un anticorps anti-GST marqué au terbium (Tb), un peptide de coactivateur marqué à la fluorescéine et un domaine de liaison aux ligands gamma (PPAR gamma-LBD) du récepteur activé au peroxysome (PPAR) qui est marqué avec la glutathion-S-transférase (GST) dans un format de mélange homogène et de lecture.

Mode agoniste
Pour exécuter le dosage LanthaScreen™ TR-FRET de coactivateur du récepteur gamma activé par les proliférateurs des peroxysomes en mode agoniste (pour identifier les composés agonistes), le LBD de PPAR gamma est ajouté aux composés de test de ligand, suivi de l’ajout d’un mélange de peptide coactivateur marqué à la fluorescéine et d’anticorps anti-GST marqué au Tb. Après une période d’incubation à température ambiante, le rapport d’émission TR-FRET 520:495 est calculé et utilisé pour déterminer la CE50 à partir d’une courbe de réponse de dose du composé. D’après la biologie de l’interaction du peptide coactivateur de PPAR gamma, la CE50 de ce ligand est une valeur composite représentant la quantité de ligand nécessaire pour se lier au récepteur, effectuer un changement conformationnel et recruter le peptide coactivateur (Figure 1).

Mode antagoniste
Lorsque le dosage LanthaScreen™ TR-FRET de coactivateur du récepteur gamma activé par les proliférateurs des peroxysomes est exécuté en mode antagoniste (pour identifier les composés antagonistes), le LBD de PPAR gamma est ajouté aux composés de test de ligand, suivi de l’ajout d’un mélange d’agoniste, de peptide coactivateur marqué à la fluorescéine et d’anticorps anti-GST marqué au Tb. La concentration d’agoniste utilisée dans ce mode est la concentration CE80 déterminée par la première exécution du dosage en mode agoniste (Figure 2).

Contenu et stockage :
Le kit de dosage LanthaScreen™ TR-FRET de coactivateur de PPARγ contient la protéine LBD de PPAR gamma (GST), le peptide coactivateur TRAP220/DRIP-2 marqué de façon fluorescente, l’anticorps anti-GST marqué au Tb et des tampons. Stocker les composants comme indiqué dans le protocole de dosage (-80°C, -20°C ou +4°C).
Usage exclusivement réservé à la recherche. Ne pas utiliser pour des procédures de diagnostic.
Spécifications
Entrée du dosageInteraction des corégulateurs biochimiques
Méthode de détectionFluorescent
À utiliser avec (application)Dosage d’interaction cofactorielle, TR-FRET
À utiliser avec (équipement)Lecteur de microplaques
Identification génétique (Entrez)5468
LigandPPAR Gamma
No. of Assays800 x 20 μL assays
ConditionnementPlaque à 384 puits
Type de produitKit de dosage du coactivateur TR-FRET PPAR gamma
Quantité800 dosages de 20 μl
AffichagePoint final
Conditions d’expéditionGlace carbonique
Entrée ciblePPARG, PPAR gamma, NR1C3
ConjuguéTB (Terbium)
Gamme de produitsLanthaScreen
Unit SizeEach
Contenu et stockage
Stocker dans un congélateur ultra-froid (-68 à -85°C).

Foire aux questions (FAQ)

How does the LanthaScreen technology compare to other TR-FRET assay formats?

We performed a comparison between the LanthaScreen assay and other commercially available TR-FRET assays from 2 different suppliers for the PKC kinase target. Our data revealed that the assays performed comparably, but that the LanthaScreen assay was simpler to optimize and contained fewer components that required optimization. The LanthaScreen assay is a two component system, whereas the other assay formats utilize a trimolecular mechanism which is more time consuming to optimize and has added costs.

For my kinase assay, can I pre-mix the Tb-Ab and EDTA so that I can stop the kinase assay and begin detection with a single reagent addition?

Yes, this is possible depending on the concentrations of reagents used and the time for which they are mixed. We recommend developing and optimizing the assay by using separate reagent additions, because this method will work under the widest range of conditions. Once the assay is optimized, the performance of the assay using pre-mixed antibody and EDTA can be evaluated. We have successfully developed robust assays in which the antibody and EDTA were pre-mixed and then stored overnight at 4 degrees C prior to use the following day. A loss of signal intensity was observed in this case, however, by using the ratiometric readout, this effect was minimal.

Are the LanthaScreen reagents stable to interference from Mg2+, Mn2+, and EDTA?

The chelate is completely stable to Mg2+. The amount of Mn2+ or EDTA that the chelate can tolerate depends largely on how long they are mixed together and the combination of additives used in the reaction. If a reaction requires either Mg2+ or Mn2+ for activation, it is best to stop the reaction by adding an equimolar amount (or slight excess) of EDTA to chelate the metal ions present. This will then essentially eliminate any interference on the terbium chelate by EDTA or Mn2+. Regardless, when LanthaScreen assays are performed using a ratiometric readout (division of the acceptor signal by the donor signal), any interference caused by Mn2+ or EDTA is largely cancelled out.

What is the optimal and/or maximum distance for a Tb-fluorescein pair?

The Förster radius, the distance at which energy transfer efficiency is half-maximal, is around 50-angstroms for the terbiumÆ fluorescein pair. However, the Förster radius does not give a complete indication of energy transfer efficiency when using long lifetime fluorophores such as terbium chelates. When using terbium chelates, energy transfer efficiency is determined by the distance of closest approach between the donor and acceptor during the excited state lifetime of the donor. In many assay systems, such as those designed using antibodies or peptides, there is a large degree of conformational freedom that allows the donor and acceptor to approach one another, effectively enhancing the FRET signal. Additionally, it is important to note that as the donor/acceptor pair approach one another and the efficiency of energy transfer increases, the fluorescent lifetime decreases to a comparable extent. From a practical standpoint, this means that when energy transfer is extremely efficient, FRET cannot be measured in time-resolved mode (because the energy transfer is complete before the measurement is made). This is another reason why TR-FRET assays based around terbium-labeled antibodies or streptavidin perform so well, because there exist a range of donor/acceptor distances, several of which are optimal for measuring FRET.

How many LanthaScreen assays can I run with a given amount of substrate?

It varies, depending on the concentration of substrate used in the assay. But in general, for the peptide substrates, 1 mg of peptide will run approximately 250,000 wells (10 µL reaction, 200 nM peptide). For Poly GT or GAT, the 1 mL of 30 µM size we sell is approximately 1 mg. With these substrates, 1 mL of 30 µM will run approximately 16,700 wells (10 µL reaction, 200 µM substrate).

20 nmol of our physiological protein substrates is sufficient for approximately 10,000 wells (10 µL reaction, 200 µM substrate).

Citations et références (3)

Citations et références
Abstract
Amorfrutins are potent antidiabetic dietary natural products.
Authors:Weidner C, de Groot JC, Prasad A, Freiwald A, Quedenau C, Kliem M, Witzke A, Kodelja V, Han CT, Giegold S, Baumann M, Klebl B, Siems K, Müller-Kuhrt L, Schürmann A, Schüler R, Pfeiffer AF, Schroeder FC, Büssow K, Sauer S,
Journal:Proc Natl Acad Sci U S A
PubMed ID:22509006
'Given worldwide increases in the incidence of obesity and type 2 diabetes, new strategies for preventing and treating metabolic diseases are needed. The nuclear receptor PPARγ (peroxisome proliferator-activated receptor gamma) plays a central role in lipid and glucose metabolism; however, current PPARγ-targeting drugs are characterized by undesirable side effects. Natural ... More
Simultaneous monitoring of discrete binding events using dual-acceptor terbium-based LRET.
Authors:Kupcho KR, Stafslien DK, DeRosier T, Hallis TM, Ozers MS, Vogel KW,
Journal:J Am Chem Soc
PubMed ID:17929812
Covalent peroxisome proliferator-activated receptor gamma adduction by nitro-fatty acids: selective ligand activity and anti-diabetic signaling actions.
Authors:Schopfer FJ, Cole MP, Groeger AL, Chen CS, Khoo NK, Woodcock SR, Golin-Bisello F, Motanya UN, Li Y, Zhang J, Garcia-Barrio MT, Rudolph TK, Rudolph V, Bonacci G, Baker PR, Xu HE, Batthyany CI, Chen YE, Hallis TM, Freeman BA,
Journal:J Biol Chem
PubMed ID:20097754
The peroxisome proliferator-activated receptor-gamma (PPARgamma) binds diverse ligands to transcriptionally regulate metabolism and inflammation. Activators of PPARgamma include lipids and anti-hyperglycemic drugs such as thiazolidinediones (TZDs). Recently, TZDs have raised concern after being linked with increased risk of peripheral edema, weight gain, and adverse cardiovascular events. Most reported endogenous PPARgamma ... More