GeneRacer™ Kit with AMV RT and TOPO TA Cloning™ Kit for Sequencing
Product Image
Invitrogen™

GeneRacer™ Kit with AMV RT and TOPO TA Cloning™ Kit for Sequencing

GeneRacer™ es una técnica RACE avanzada (amplificación rápida de extremos de ADNc) que mejora la eficiencia de la amplificación deMás información
Have Questions?
Número de catálogoCantidad
L1500011 Kit
Número de catálogo L150001
Precio (MXN)
-
Cantidad:
1 Kit
GeneRacer™ es una técnica RACE avanzada (amplificación rápida de extremos de ADNc) que mejora la eficiencia de la amplificación de extremos de ADNc de longitud completa de 5 ´ y 3 ´. Con el kit GeneRacer™ puede:

• Genera el ADNc a partir de transcripciones de hasta 10 kb de longitud
• Obtenga el extremo 5´ de longitud completa de transcritos poco frecuentes con menos de 30 copias por célula
• Clone los extremos 5´ y 3´ de longitud completa para construir la secuencia de ADNc completa

El kit GeneRacer™ está disponible con transcriptasa inversa (RT) SuperScript™ III para obtener una amplificación mejorada del extremo 5´ de longitud completa del ARNm largo y complejo. La parte de ARNasa H de RT SuperScript™ III se ha mutado para evitar la disociación de ARNm durante la síntesis de ADNc. Esto aumenta el tamaño y la producción de ADNc. RT SuperScript™ III es más termoestable que las RT naturales. Esto permite la transcripción inversa a altas temperaturas, lo que relaja la estructura secundaria de plantillas complejas y permite que la síntesis de ADNc se complete.

Cómo funciona GeneRacer™

El kit GeneRacer™ garantiza que solo se amplifican los transcritos que contienen extremos de ADNc de longitud completa (1,2). La Figura 1 describe cómo funciona el kit GeneRacer™. El avanzado protocolo comienza en el nivel de ARN y se centra específicamente solo en ARNm con caperuza 5´. En los pasos siguientes, se retira la caperuza y se sustituye con el oligonucleótido de ARN GeneRacer™. Durante la transcripción inversa, la secuencia de oligonucleótido de ARN GeneRacer™ se incorpora al ADNc. Solo el ADNc que se haya transcrito de manera inversa completamente contendrá esta secuencia conocida. A continuación se realiza una PCR 5´ RACE mediante el uso del primer de 5´ GeneRacer™ específico de la secuencia de oligonucleótido de ARN GeneRacer™ y un primer específico del gen. El resultado es ADN amplificado que contiene la secuencia de ADNc de 5´de longitud completa.

Sensibilidad y longitud

Con el fin de demostrar la capacidad del kit GeneRacer™ para capturar el ADNc de 5fi de longitud completa, se han amplificado los extremos 5fi de genes con puntos conocidos de inicio de transcripciones. Comenzando con ARN total y siguiendo el protocolo de GeneRacer™, se amplificaron tanto los transcritos largos (10 kb) como los mensajes raros presentes en el 0,01 %, o 30 copias por célula (Figura 2).
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Cepa bacteriana o de levaduraTOP10
Método de clonaciónTOPO TA
Para utilizar con (aplicación)Transcripción inversa
IncluyeCada kit GeneRacer contiene la caja GeneRacer, una caja RT, columnas S.N.A.P. y un kit de clonación TOPO. El GeneRacer y la caja RT contienen suficientes reactivos para cinco reacciones de ADNc más una reacción de control y cebadores para 50 reacciones de PCR. En la caja de GeneRacer se incluyen las enzimas CIP, TAP, ligasa de ARN T4 y sus tampones, el oligonucleótido de ARN GeneRNA (predividido y liofilizado), cebadores GeneRacer y cebadores Nested, inhibidor de ribonucleasa recombinante RNaseOUT, fenol/cloroformo, glucógeno de mejillón, agua esterilizada y controles. Almacenar a -20 °C. La caja de RT SuperScript III incluye RT SuperScript III, tampón de primera cadena 5X, DTT, ARNasa H, cebadores aleatorios, cebador de oligo(dT) GeneRacer y mezcla dNTP. Almacenar a -20 °C. La caja de RT AMV clonada incluye RT AMV clonada, tampones de primera cadena 5X, DTT, ARNasa H, cebadores aleatorios, cebador de oligo(dT) GeneRacer y mezlca dNTP.
Línea de productosGeneRacer, TA Cloning, TOPO
Tipo de productoKit de clonación
Cantidad1 Kit
VectorpCR4-TOPO TA
FormatoKit
Unit SizeEach
Contenido y almacenamiento
Cada kit GeneRacer™ contiene la caja GeneRacer™, una caja de RT, columnas S.N.A.P.™ y un kit de clonación TOPO™. El GeneRacer™ y la caja RT contienen suficientes reactivos para cinco reacciones de ADNc más una reacción de control y cebadores para 50 reacciones de PCR. En la caja de GeneRacer™ se incluyen las enzimas CIP, TAP, ligasa de ARN T4 y sus tampones, el oligonucleótido de ARN GeneRacer™ (predividido y liofilizado), cebadores GeneRacer™ y cebadores Nested, inhibidor de ribonucleasa recombinante RNaseOUT™, fenol/cloroformo, glucógeno de mejillón, agua esterilizada y controles. Almacenar a – 20 °C. La caja de RT SuperScript™ III incluye RT SuperScript™ III, tampón de primera cadena 5X, DTT, ARNasa H, cebadores aleatorios, cebador de oligo(dT) GeneRacer™ y mezlca dNTP. Almacenar a – 20 °C. La caja de RT AMV clonada incluye RT AMV clonada, tampones de primera cadena 5X, DTT, ARNasa H, cebadores aleatorios, cebador de oligo(dT) GeneRacer™ y mezlca dNTP. Almacenar a - 80 °C. Una bolsa separada contiene diez columnas de purificación de gel S.N.A.P.™ para productos de PCR purificadores de gel. Almacenar a temperatura ambiente. El kit de clonación TOPO™ de 10 reacciones para secuenciación contiene dos cajas. Almacene la caja de clonación TOPO™ a -20 °C. Almacene la caja de E. coli competente a -70 °C. Se garantiza la estabilidad de todos los reactivos durante 6 meses si se almacenan correctamente.

Preguntas frecuentes

How long can I store the cDNA from my reverse transcription step?

You can store your cDNA at 2-6 degrees C for up to 24 hours. For long-term storage, store the cDNA at -15 to -25 degrees C and add EDTA to a final concentration of 1 mM to prevent degradation.

I'm getting PCR products from my 5' RACE, but they are not full length. What should I do?

The GeneRacer method is designed to ensure that only full-length messages are ligated to the GeneRacer RNA Oligo and PCR amplified after cDNA synthesis. It is highly recommended that you clone your RACE products and analyze at least 10-12 colonies to ensure that you isolate the longest message. Many genes do not have only one set of transcription start sites but rather multiple transcription start sites spanning sometimes just a few or other times a hundred or even more bases. Cloning of the RACE products and analyzing multiple colonies ensues that you detect the diversity of the heterogeneous transcription start sites of your gene. It is also possible that you might obtain PCR products that may not represent the full-length message for your gene. PCR products that do not represent full-length message may be obtained because:

-RNA degradation after the CIP reaction creates new truncated substrates with a 5' phosphate for ligation to the GeneRacer RNA Oligo. Be sure to take precautions to ensure that the RNA is not degraded.
-CIP dephosphorylation was incomplete. Increase the amount of CIP in the reaction or decrease the amount of RNA.
-PCR yielded a PCR artifact and not true ligation product. Optimize your PCR using the suggestions described above.

I'm seeing RACE PCR artifacts in my GeneRacer experiment. What am I doing wrong?

RACE PCR artifacts or nonspecific PCR bands can result from one or more of the following:

-Nonspecific binding of GSPs to other cDNAs resulting in the amplification of unrelated products as well as desired products.
-Nonspecific binding of GeneRacer primers to cDNA resulting in PCR products with GeneRacer primer sequence on both ends of the PCR product.
-RNA degradation.
-Contamination of PCR tubes or reagents.
Note: Artifacts usually result from less than optimal PCR conditions and can be identified in negative control PCR.

I'm getting unexpected bands after electrophoretic analysis of my amplified RT-PCR products. Can you please offer some suggestions?

Please see the following causes and suggestions:
Contamination by genomic DNA or an unexpected splice variant - Pretreat RNA with DNase I, amplification grade (Cat. No 18068015).
Design primers that anneal to sequences in exons on both sides of an intron or at the exon/exon boundary of the mRNA to differentiate between amplified cDNA and potential contaminating genomic DNA.
To test if products were derived from DNA, perform a minus RT control.
Nonspecific annealing of primers - Vary the PCR annealing conditions.
Use a hot-start PCR polymerase.
Optimize magnesium concentration for each template and primer combination.
Primers formed dimers - Design primers without complementary sequences at the 3' ends.

I'm getting no bands after electrophoretic analysis of my amplified RT-PCR products. Can you please offer some tips?

Please see the following causes and suggestions:

Procedural error in first-strand cDNA synthesis - Use high-quality RNA as a control to verify the efficiency of the first-strand reaction.
RNase contamination - Add control RNA to sample to determine if RNase is present in the first-strand reaction. Use an RNase inhibitor in the first-strand reaction.
Polysaccharide co-precipitation of RNA - Precipitate RNA with lithium chloride to remove polysaccharides, as described in Sambrook et al.
Target mRNA contains strong transcriptional pauses - Use random hexamers instead of oligo(dT) in the first-strand reaction, increase the temperature, and use PCR primers closer to the 3' terminus of the target cDNA.
Too little first-strand product was used in PCR - Use up to 10% of first-strand reaction per 50 mL PCR.
Gene-specific primer was used for first-strand synthesis - Try another set of GSP or switch to oligo(dT). Make sure the GSP is the antisense of the sequence.
Inhibitors of RT present - Remove inhibitors by ethanol precipitation of mRNA preparation before the first-strand reaction. Include a 70% (v/v) ethanol wash of the mRNA pellet. Note: inhibitors of RT include SDS, EDTA, guanidinium salts, formamide, sodium pyrophosphate, and spermidine.
RNA has been damaged or degraded - Ensure that high-quality, intact RNA is being used.
Annealing temperature is too high - Decrease temperature as necessary and/or use touchdown PCR.

Citations & References (8)

Citations & References
Abstract
A novel notch protein, N2N, targeted by neutrophil elastase and implicated in hereditary neutropenia.
Authors:Duan Z, Li FQ, Wechsler J, Meade-White K, Williams K, Benson KF, Horwitz M,
Journal:Mol Cell Biol
PubMed ID:14673143
Mutations in ELA2, encoding the human serine protease neutrophil elastase, cause cyclic and severe congenital neutropenia, and recent evidence indicates that the mutations alter the membrane trafficking of neutrophil elastase. These disorders feature impaired bone marrow production of neutrophils along with excess monocytes-terminally differentiated lineages corresponding to the two alternative ... More
A gene encoding a protein modified by the phytohormone indoleacetic acid.
Authors: Walz Alexander; Park Seijin; Slovin Janet P; Ludwig-Müller Jutta; Momonoki Yoshie S; Cohen Jerry D;
Journal:Proc Natl Acad Sci U S A
PubMed ID:11830675
'We show that the expression of an indole-3-acetic acid (IAA)-modified protein from bean seed, IAP1, is correlated to the developmental period of rapid growth during seed development. Moreover, this protein undergoes rapid degradation during germination. The gene for IAP1, the most abundant protein covalently modified by IAA (iap1, GenBank accession ... More
Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133.
Authors:Shmelkov SV, Jun L, St Clair R, McGarrigle D, Derderian CA, Usenko JK, Costa C, Zhang F, Guo X, Rafii S,
Journal:Blood
PubMed ID:14630820
'AC133 is a member of a novel family of cell surface proteins with 5 transmembrane domains. The function of AC133 is unknown. Although AC133 mRNA is detected in different tissues, its expression in the hematopoietic system is restricted to CD34+ stem cells. AC133 is also expressed on stem cells of ... More
Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: Implications for regulation and cellular function.
Authors: Hubert Nadia; Hentze Matthias W;
Journal:Proc Natl Acad Sci U S A
PubMed ID:12209011
'Divalent metal transporter 1 (DMT1) mediates apical iron uptake into duodenal enterocytes and also transfers iron from the endosome into the cytosol after cellular uptake via the transferrin receptor. Hence, mutations in DMT1 cause systemic iron deficiency and anemia. DMT1 mRNA levels are increased in the duodenum of iron-deficient animals. ... More
Evolution of moth sex pheromones via ancestral genes.
Authors: Roelofs Wendell L; Liu Weitian; Hao Guixia; Jiao Hongmei; Rooney Alejandro P; Linn Charles E Jr;
Journal:Proc Natl Acad Sci U S A
PubMed ID:12374851
'Mate finding in most moth species involves long-distance signaling via female-emitted sex pheromones. There is a great diversity of pheromone structures used throughout the Lepidoptera, even among closely related species. The conundrum is how signal divergence has occurred. With strong normalizing selection pressure on blend composition and response preferences, it ... More