The sixth-generation of Thermo Scientific Phenom ProX G6 Desktop SEM fills the gap between light microscopy and floor-model SEM analysis, thus expanding the capabilities of research facilities. It offers fast, high-resolution imaging in addition to an integrated energy-dispersive X-ray diffraction (EDS) detector for robust, easy-to-use, rapid elemental analysis.

Key Features

Fast and easy to use

The Phenom Pro Desktop SEM can be used to relieve the burden of routine analysis for common samples from floor-model SEM instruments. Instrument configuration and the sample loading mechanism ensure quick imaging with minimal time spent tuning between experiments.

Long-lifetime CeB6 source

Facility users of any experience level can quickly begin producing high-quality results with the Phenom Pro Desktop SEM. Its long-lifetime CeB6 source offers high brightness while requiring low maintenance.

Robust and small form factor

It's high stability and small form factor allow the instrument to be used in practically any lab environment; more simply put, it does not require specialized infrastructure or expert oversight.


Specifications

Style Sheet for Products Table Specifications
Light optical magnification
  • 20–134x
Electron optical magnification range
  • 160-350,000x
Resolution
  • ≤ 6 nm SED and ≤ 8 nm BSD
Digital zoom
  • Max. 12x
Light optical navigation camera
  • Color
Acceleration voltages
  • Default: 5 kV, 10 kV and 15 kV
  • Advanced mode: adjustable range between 4.8 kV and 20.5 kV imaging and analysis mode
Vacuum modes
  • High vacuum mode
  • Charge reduction mode via optional low vacuum sample holder
Detector
  • Backscattered electron detector (standard)
  • Energy-dispersive X-ray detector (standard)
  • Secondary electron detector (optional)
Sample size
  • Up to 25 mm diameter (optional 32 mm)
Sample height
  • Up to 35 mm (optional 100 mm)
Style Sheet for Techniques (LONG VERSION) and Media Gallery Tab

Testimonial from Professor Sir Colin Humphreys, University of Cambridge.

Webinar: Phenom Pro(X) G6 Desktop SEM

Watch this webinar to learn about:

  • Ease of use—the versatility and the specifications you can achieve
  • Doing more research—imaging and analysis in under two minutes
  • Fast time to image acquisition—only 30 seconds
  • User interface—24-inch, full-screen SEM image with presets

Webinar: Scanning electron microscopy: selecting the right technology for your needs

This on-demand webinar has been designed to help you decide which SEM best meets your unique needs. We present an overview of Thermo Fisher Scientific SEM technology for multi-user research labs and focus on how these wide-ranging solutions deliver performance, versatility, in situ dynamics and faster time to results. Watch this webinar if you are interested in:

  • How the needs for different microanalysis modalities are met (EDX, EBSD, WDS, CL, etc.).
  • How samples are characterized in their natural state without the need for sample preparation.
  • How new advanced automation allows researchers to save time and increase productivity.

Testimonial from Professor Sir Colin Humphreys, University of Cambridge.

Webinar: Phenom Pro(X) G6 Desktop SEM

Watch this webinar to learn about:

  • Ease of use—the versatility and the specifications you can achieve
  • Doing more research—imaging and analysis in under two minutes
  • Fast time to image acquisition—only 30 seconds
  • User interface—24-inch, full-screen SEM image with presets

Webinar: Scanning electron microscopy: selecting the right technology for your needs

This on-demand webinar has been designed to help you decide which SEM best meets your unique needs. We present an overview of Thermo Fisher Scientific SEM technology for multi-user research labs and focus on how these wide-ranging solutions deliver performance, versatility, in situ dynamics and faster time to results. Watch this webinar if you are interested in:

  • How the needs for different microanalysis modalities are met (EDX, EBSD, WDS, CL, etc.).
  • How samples are characterized in their natural state without the need for sample preparation.
  • How new advanced automation allows researchers to save time and increase productivity.

Applications

Process Control_Thumb_274x180_144DPI

Process Control
 

Modern industry demands high throughput with superior quality, a balance that is maintained through robust process control. SEM and TEM tools with dedicated automation software provide rapid, multi-scale information for process monitoring and improvement.

 

Quality Control_Thumb_274x180_144DPI

Quality Control
 

Quality control and assurance are essential in modern industry. We offer a range of EM and spectroscopy tools for multi-scale and multi-modal analysis of defects, allowing you to make reliable and informed decisions for process control and improvement.

 

Fundamental Materials Research_R&D_Thumb_274x180_144DPI

Fundamental Materials Research

Novel materials are investigated at increasingly smaller scales for maximum control of their physical and chemical properties. Electron microscopy provides researchers with key insight into a wide variety of material characteristics at the micro- to nano-scale.

 

pathfinding_thumb_274x180_144dpi

Semiconductor Pathfinding and Development

Advanced electron microscopy, focused ion beam, and associated analytical techniques for identifying viable solutions and design methods for the fabrication of high-performance semiconductor devices.

yield_ramp_metrology_2_thumb_274x180

Yield Ramp and Metrology

We offer advanced analytical capabilities for defect analysis, metrology, and process control, designed to help increase productivity and improve yield across a range of semiconductor applications and devices.

Semiconductor Failure Analysis

Semiconductor Failure Analysis

Increasingly complex semiconductor device structures result in more places for failure-inducing defects to hide. Our next-generation workflows help you localize and characterize subtle electrical issues that affect yield, performance, and reliability.

physical_characterization_thumb_274x180_144dpi

Physical and Chemical Characterization

Ongoing consumer demand drives the creation of smaller, faster, and cheaper electronic devices. Their production relies on high-productivity instruments and workflows that image, analyze, and characterize a broad range of semiconductor and display devices.

EDS Elemental Analysis

EDS provides vital compositional information to electron microscope observations. In particular, our unique Super-X and Dual-X Detector Systems add options for enhanced throughput and/or sensitivity, allowing you to optimize data acquisition to meet your research priorities.

Learn more ›

3D EDS Tomography

Modern materials research is increasingly reliant on nanoscale analysis in three dimensions. 3D characterization, including compositional data for full chemical and structural context, is possible with 3D EM and energy dispersive X-ray spectroscopy.

Learn more ›

Atomic-Scale Elemental Mapping with EDS

Atomic-resolution EDS provides unparalleled chemical context for materials analysis by differentiating the elemental identity of individual atoms. When combined with high-resolution TEM, it is possible to observe the precise organization of atoms in a sample.

Learn more ›

Imaging Hot Samples

Studying materials in real-world conditions often involves working at high temperatures. The behavior of materials as they recrystallize, melt, deform, or react in the presence of heat can be studied in situ with scanning electron microscopy or DualBeam tools.

Learn more ›

In Situ experimentation

Direct, real-time observation of microstructural changes with electron microscopy is necessary to understand the underlying principles of dynamic processes such as recrystallization, grain growth, and phase transformation during heating, cooling, and wetting.

Learn more ›

Multi-scale analysis

Novel materials must be analyzed at ever higher resolution while retaining the larger context of the sample. Multi-scale analysis allows for the correlation of various imaging tools and modalities such as X-ray microCT, DualBeam, Laser PFIB, SEM and TEM.

Learn more ›

SEM Metrology

Scanning electron microscopy provides accurate and reliable metrology data at nanometer scales. Automated ultra-high-resolution SEM metrology enables faster time-to-yield and time-to-market for memory, logic, and data storage applications.

Learn more ›

Semiconductor Analysis and Imaging

Thermo Fisher Scientific offers scanning electron microscopes for every function of a semiconductor lab, from general imaging tasks to advanced failure analysis techniques requiring precise voltage-contrast measurements.

Learn more ›

EDS Elemental Analysis

EDS provides vital compositional information to electron microscope observations. In particular, our unique Super-X and Dual-X Detector Systems add options for enhanced throughput and/or sensitivity, allowing you to optimize data acquisition to meet your research priorities.

Learn more ›

3D EDS Tomography

Modern materials research is increasingly reliant on nanoscale analysis in three dimensions. 3D characterization, including compositional data for full chemical and structural context, is possible with 3D EM and energy dispersive X-ray spectroscopy.

Learn more ›

Atomic-Scale Elemental Mapping with EDS

Atomic-resolution EDS provides unparalleled chemical context for materials analysis by differentiating the elemental identity of individual atoms. When combined with high-resolution TEM, it is possible to observe the precise organization of atoms in a sample.

Learn more ›

Imaging Hot Samples

Studying materials in real-world conditions often involves working at high temperatures. The behavior of materials as they recrystallize, melt, deform, or react in the presence of heat can be studied in situ with scanning electron microscopy or DualBeam tools.

Learn more ›

In Situ experimentation

Direct, real-time observation of microstructural changes with electron microscopy is necessary to understand the underlying principles of dynamic processes such as recrystallization, grain growth, and phase transformation during heating, cooling, and wetting.

Learn more ›

Multi-scale analysis

Novel materials must be analyzed at ever higher resolution while retaining the larger context of the sample. Multi-scale analysis allows for the correlation of various imaging tools and modalities such as X-ray microCT, DualBeam, Laser PFIB, SEM and TEM.

Learn more ›

SEM Metrology

Scanning electron microscopy provides accurate and reliable metrology data at nanometer scales. Automated ultra-high-resolution SEM metrology enables faster time-to-yield and time-to-market for memory, logic, and data storage applications.

Learn more ›

Semiconductor Analysis and Imaging

Thermo Fisher Scientific offers scanning electron microscopes for every function of a semiconductor lab, from general imaging tasks to advanced failure analysis techniques requiring precise voltage-contrast measurements.

Learn more ›

Documents

Datasheets


Contact us

Electron microscopy services for
the materials science

To ensure optimal system performance, we provide you access to a world-class network of field service experts, technical support, and certified spare parts.

Style Sheet for Support and Service footer
Style Sheet for Fonts
Style Sheet for Cards