Advanced materials

Countless technical innovations are directly or indirectly linked to novel materials. To fuel continued innovation, researchers want to deepen their understanding of the physical and chemical properties of materials (morphological, structural, magnetic, thermal, and mechanical) at macro-, micro-, and nanoscales.

There are many reasons to understand and improve the properties of materials, thereby increasing their utility and value. Strength, ductility, density, corrosion resistance, and electrical conductance are just a few of the properties that can be vital for enhanced or even entirely new applications of a material.

Polymer materials and catalysts

In the fields of polymer and catalysis research, chemists and chemical engineers want to better understand the relationships between material structure and function at the micro- and nanometer scales. Their discoveries lead to new materials systems with targeted functionality, longer active lifetimes, lower replacement costs, improved strength, and better manufacturability.

The exciting field of nanodevices is focused on developing miniaturized technology with unique functionality for electronic, magnetic, mechanical, and optical systems. Sensors, actuators, and microfluidic devices are all in high demand to help solve global energy, communications, and critical monitoring challenges.

Materials science research 

As scientists expand their knowledge of material structures, they also want to understand how materials behave in response to light, temperature, pressure, and other stimuli. Additionally, two-dimensional observations do not always yield answers in a three-dimensional world. Imaging, analysis, and materials characterization must therefore deliver real-world visibility by generating information in 3D under a variety of environmental conditions.

It is clear that innovative materials play essential roles in safety, clean energy, transportation, human health, and industrial productivity. Whether exploring alternative energy sources or developing stronger, lighter materials and sophisticated nanodevices, Thermo Fisher Scientific provides a broad range of spectroscopy and electron microscopy tools for the fundamental research and development of new materials.


Resources

Samples


Investigación de baterías

El desarrollo de baterías se realiza mediante análisis multiescala con microCT, SEM y TEM, espectroscopía Raman, XPS y visualización y análisis 3D digital. Aprenda cómo este enfoque proporciona la información estructural y química necesaria para crear mejores baterías.

Más información ›


Investigación sobre polímeros

La microestructura polimérica determina las características y el rendimiento del material a granel. La microscopía electrónica permite un análisis exhaustivo en microescala de la morfología y composición de los polímeros para aplicaciones de control de calidad e I+D.

Más información ›


Investigación sobre metales

La producción eficaz de metales requiere un control preciso de las inclusiones y precipitados. Nuestras herramientas automatizadas pueden realizar varias tareas cruciales para el análisis de metales, incluyendo el recuento de nanopartículas, el análisis químico EDS y la preparación de muestras de TEM.

Más información ›


Investigación sobre catálisis

Los catalizadores son cruciales para la mayoría de los procesos industriales modernos. Su eficacia depende de la composición microscópica y la morfología de las partículas catalíticas; EM con EDS es ideal para estudiar estas propiedades.

Más información ›


Materiales 2D

La investigación de materiales novedosos presta cada vez más atención a la estructura de materiales de baja dimensión. La microscopía electrónica de transmisión de barrido con corrección de sonda y monocromación permite la adquisición de imágenes de materiales bidimensionales de alta resolución.

Más información ›


Nanopartículas

Los materiales tienen propiedades sustancialmente diferentes en la nanoescala y en la macroescala. Para estudiarlos, la instrumentación S/TEM se puede combinar con la espectroscopia de rayos X por dispersión de energía para obtener datos de resolución nanométrica, o incluso subnanométrica.

Más información ›


Pruebas de materiales para automóviles

Todos los componentes de un vehículo moderno están diseñados para garantizar la máxima seguridad, eficacia y rendimiento. La caracterización detallada de materiales de automoción con microscopía electrónica y espectroscopía informa sobre decisiones cruciales sobre procesos, mejoras de productos y nuevos materiales.

Más información ›

Style Sheet for Komodo Tabs

Techniques

Preparación de muestras (S)TEM

Los microscopios DualBeam permiten la preparación de muestras ultrafinas de alta calidad para el análisis (S)TEM. Gracias a la automatización avanzada, los usuarios con cualquier nivel de experiencia pueden obtener resultados de nivel experto para una amplia gama de materiales.

Más información ›

Caracterización de materiales en 3D

El desarrollo de materiales suele requerir caracterización en 3D en varias escalas. Los instrumentos DualBeam permiten el corte en secciones en serie de grandes volúmenes y la posterior adquisición de imágenes SEM a escala de nanómetro, las cuales se pueden procesar en reconstrucciones 3D de la muestra de alta calidad.

Más información ›

Creación de prototipos a nanoescala

A medida que la tecnología continúa miniaturizándose, la demanda de dispositivos y estructuras a nanoescala está aumentando. La creación de prototipos a nanoescala en 3D con instrumentos DualBeam le ayuda a diseñar, crear e inspeccionar rápidamente prototipos funcionales microscópicos y a nanoescala.

Más información ›

Análisis elemental EDS

EDS proporciona información de composición vital sobre las observaciones de microscopio electrónico. En concreto, nuestros exclusivos sistemas de detectores Super-X y Dual-X añaden opciones para mejorar el rendimiento y/o la sensibilidad, permitiendo optimizar la adquisición de datos para cumplir con sus prioridades de investigación.

Más información ›

Tomografía EDS en 3D

La investigación de materiales modernos depende cada vez más del análisis a nanoescala en tres dimensiones. La caracterización en 3D, incluidos los datos de composición para el contexto químico y estructural completo, es posible con EM en 3D y espectroscopia de rayos X dispersiva.

Más información ›

Asignación elemental a escala atómica con EDS

El EDS de resolución atómica proporciona un contexto químico incomparable para el análisis de materiales al diferenciar la identidad elemental de los átomos individuales. Cuando se combina con TEM de alta resolución, es posible observar la organización precisa de los átomos en una muestra.

Más información ›

ColorSEM

Mediante la utilización de EDS en tiempo real (espectroscopia de rayos X por dispersión de energía) con cuantificación en tiempo real, la tecnología ColorSEM transforma las imágenes SEM en una técnica de color. Cualquier usuario puede adquirir datos elementales de forma continua para obtener información más completa que nunca.

Más información ›

Adquisición de imágenes con HRSTEM y HRTEM

La microscopía electrónica de transmisión es muy valiosa para caracterizar la estructura de nanopartículas y nanomateriales. EL TEM y STEM de alta resolución permiten obtener datos de resolución atómica junto con información sobre la composición química.

Más información ›

Adquisición de imágenes de contraste de fase diferencial

La investigación electrónica moderna se basa en el análisis a nanoescala de las propiedades eléctricas y magnéticas. El contraste de fase diferencial STEM (DPC-STEM) puede obtener imágenes de la fuerza y la distribución de los campos magnéticos en una muestra y mostrar la estructura de dominio magnético.

Más información ›

Adquisición de imágenes de muestras calientes

El estudio de los materiales en condiciones reales suele implicar el trabajo a altas temperaturas. El comportamiento de los materiales cuando se recristalizan, derriten, deforman o reaccionan ante el calor se puede estudiar in situ con la microscopía electrónica de barrido o con las herramientas DualBeam.

Más información ›

SEM ambiental (ESEM)

El SEM ambiental permite que se adquieran imágenes de los materiales en su estado nativo. Esto es ideal para investigadores académicos e industriales que necesitan probar y analizar muestras húmedas, sucias, reactivas, con liberación de gases o que no son compatibles con el vacío.

Más información ›

Espectroscopía de pérdida de energía de electrones

La investigación en ciencias de los materiales se beneficia de la EELS de alta resolución para una amplia gama de aplicaciones analíticas. Esto incluye asignación elemental de alto rendimiento, alta relación señal-ruido, así como sondeo de estados de oxidación y fonones de superficie.

Más información ›

Corte transversal

El corte transversal proporciona una visión adicional, ya que descubre información de la subsuperficie. Los instrumentos DualBeam tienen columnas FIB para poder realizar el corte transversal con alta calidad. Con la automatización, se puede realizar el procesamiento de muestras de alto rendimiento sin supervisión.

Más información ›

Experimentación in situ

La observación directa y en tiempo real de los cambios microestructurales con microscopía electrónica es necesaria para comprender los principios subyacentes de los procesos dinámicos como la recristalización, el crecimiento del grano y la transformación de fases durante el calentamiento, refrigeración y humectación.

Más información ›

Análisis de partículas

El análisis de partículas juega un papel vital en la investigación de nanomateriales y el control de calidad. La resolución a escala nanométrica y la adquisición de imágenes superiores de microscopía electrónica se pueden combinar con software especializado para la rápida caracterización de polvos y partículas.

Más información ›

Catodoluminiscencia

La catodoluminiscencia (CL) describe la emisión de luz de un material cuando se excita por un haz de electrones. Esta señal, captada por un detector de CL especializado, contiene información sobre la composición de la muestra, defectos de cristal o propiedades fotónicas.

Más información ›

SIMS

El detector TOF-SIMS (espectrometría de masas de iones secundaria de tecnología de tiempo de vuelo) para microscopía electrónica de tecnología barrido de haz de iones (FIB-SEM) permite la caracterización analítica de alta resolución de todos los elementos de la tabla periódica, incluso a bajas concentraciones.

Más información ›

Análisis de escala múltiple

Los novedosos materiales se deben analizar a una resolución cada vez mayor, manteniendo el contexto más amplio de la muestra. El análisis de escala múltiple permite la correlación de varias herramientas y modalidades de obtención de imágenes, tales como microTC de rayos X, DualBeam, PFIB láser, SEM y TEM.

Más información ›

Preparación de muestras de APT

La tomografía de sonda atómica (APT) proporciona un análisis de composición de materiales en 3D con resolución atómica. La microscopía Focused ion beam (FIB) es una técnica esencial para la preparación de muestras de alta calidad, orientación y sitio específico para la caracterización de APT.

Más información ›

Flujo de trabajo de partículas automatizado

El flujo de trabajo de nanopartículas automatizado (APW) es un flujo de trabajo de microscopio electrónico de transmisión para el análisis de nanopartículas que proporciona adquisición de imágenes de área extensa y de alta resolución, además de adquisición de datos en nanoescala, todo ello con un procesamiento sobre la marcha.

Más información ›

Preparación de muestras (S)TEM

Los microscopios DualBeam permiten la preparación de muestras ultrafinas de alta calidad para el análisis (S)TEM. Gracias a la automatización avanzada, los usuarios con cualquier nivel de experiencia pueden obtener resultados de nivel experto para una amplia gama de materiales.

Más información ›

Caracterización de materiales en 3D

El desarrollo de materiales suele requerir caracterización en 3D en varias escalas. Los instrumentos DualBeam permiten el corte en secciones en serie de grandes volúmenes y la posterior adquisición de imágenes SEM a escala de nanómetro, las cuales se pueden procesar en reconstrucciones 3D de la muestra de alta calidad.

Más información ›

Creación de prototipos a nanoescala

A medida que la tecnología continúa miniaturizándose, la demanda de dispositivos y estructuras a nanoescala está aumentando. La creación de prototipos a nanoescala en 3D con instrumentos DualBeam le ayuda a diseñar, crear e inspeccionar rápidamente prototipos funcionales microscópicos y a nanoescala.

Más información ›

Análisis elemental EDS

EDS proporciona información de composición vital sobre las observaciones de microscopio electrónico. En concreto, nuestros exclusivos sistemas de detectores Super-X y Dual-X añaden opciones para mejorar el rendimiento y/o la sensibilidad, permitiendo optimizar la adquisición de datos para cumplir con sus prioridades de investigación.

Más información ›

Tomografía EDS en 3D

La investigación de materiales modernos depende cada vez más del análisis a nanoescala en tres dimensiones. La caracterización en 3D, incluidos los datos de composición para el contexto químico y estructural completo, es posible con EM en 3D y espectroscopia de rayos X dispersiva.

Más información ›

Asignación elemental a escala atómica con EDS

El EDS de resolución atómica proporciona un contexto químico incomparable para el análisis de materiales al diferenciar la identidad elemental de los átomos individuales. Cuando se combina con TEM de alta resolución, es posible observar la organización precisa de los átomos en una muestra.

Más información ›

ColorSEM

Mediante la utilización de EDS en tiempo real (espectroscopia de rayos X por dispersión de energía) con cuantificación en tiempo real, la tecnología ColorSEM transforma las imágenes SEM en una técnica de color. Cualquier usuario puede adquirir datos elementales de forma continua para obtener información más completa que nunca.

Más información ›

Adquisición de imágenes con HRSTEM y HRTEM

La microscopía electrónica de transmisión es muy valiosa para caracterizar la estructura de nanopartículas y nanomateriales. EL TEM y STEM de alta resolución permiten obtener datos de resolución atómica junto con información sobre la composición química.

Más información ›

Adquisición de imágenes de contraste de fase diferencial

La investigación electrónica moderna se basa en el análisis a nanoescala de las propiedades eléctricas y magnéticas. El contraste de fase diferencial STEM (DPC-STEM) puede obtener imágenes de la fuerza y la distribución de los campos magnéticos en una muestra y mostrar la estructura de dominio magnético.

Más información ›

Adquisición de imágenes de muestras calientes

El estudio de los materiales en condiciones reales suele implicar el trabajo a altas temperaturas. El comportamiento de los materiales cuando se recristalizan, derriten, deforman o reaccionan ante el calor se puede estudiar in situ con la microscopía electrónica de barrido o con las herramientas DualBeam.

Más información ›

SEM ambiental (ESEM)

El SEM ambiental permite que se adquieran imágenes de los materiales en su estado nativo. Esto es ideal para investigadores académicos e industriales que necesitan probar y analizar muestras húmedas, sucias, reactivas, con liberación de gases o que no son compatibles con el vacío.

Más información ›

Espectroscopía de pérdida de energía de electrones

La investigación en ciencias de los materiales se beneficia de la EELS de alta resolución para una amplia gama de aplicaciones analíticas. Esto incluye asignación elemental de alto rendimiento, alta relación señal-ruido, así como sondeo de estados de oxidación y fonones de superficie.

Más información ›

Corte transversal

El corte transversal proporciona una visión adicional, ya que descubre información de la subsuperficie. Los instrumentos DualBeam tienen columnas FIB para poder realizar el corte transversal con alta calidad. Con la automatización, se puede realizar el procesamiento de muestras de alto rendimiento sin supervisión.

Más información ›

Experimentación in situ

La observación directa y en tiempo real de los cambios microestructurales con microscopía electrónica es necesaria para comprender los principios subyacentes de los procesos dinámicos como la recristalización, el crecimiento del grano y la transformación de fases durante el calentamiento, refrigeración y humectación.

Más información ›

Análisis de partículas

El análisis de partículas juega un papel vital en la investigación de nanomateriales y el control de calidad. La resolución a escala nanométrica y la adquisición de imágenes superiores de microscopía electrónica se pueden combinar con software especializado para la rápida caracterización de polvos y partículas.

Más información ›

Catodoluminiscencia

La catodoluminiscencia (CL) describe la emisión de luz de un material cuando se excita por un haz de electrones. Esta señal, captada por un detector de CL especializado, contiene información sobre la composición de la muestra, defectos de cristal o propiedades fotónicas.

Más información ›

SIMS

El detector TOF-SIMS (espectrometría de masas de iones secundaria de tecnología de tiempo de vuelo) para microscopía electrónica de tecnología barrido de haz de iones (FIB-SEM) permite la caracterización analítica de alta resolución de todos los elementos de la tabla periódica, incluso a bajas concentraciones.

Más información ›

Análisis de escala múltiple

Los novedosos materiales se deben analizar a una resolución cada vez mayor, manteniendo el contexto más amplio de la muestra. El análisis de escala múltiple permite la correlación de varias herramientas y modalidades de obtención de imágenes, tales como microTC de rayos X, DualBeam, PFIB láser, SEM y TEM.

Más información ›

Preparación de muestras de APT

La tomografía de sonda atómica (APT) proporciona un análisis de composición de materiales en 3D con resolución atómica. La microscopía Focused ion beam (FIB) es una técnica esencial para la preparación de muestras de alta calidad, orientación y sitio específico para la caracterización de APT.

Más información ›

Flujo de trabajo de partículas automatizado

El flujo de trabajo de nanopartículas automatizado (APW) es un flujo de trabajo de microscopio electrónico de transmisión para el análisis de nanopartículas que proporciona adquisición de imágenes de área extensa y de alta resolución, además de adquisición de datos en nanoescala, todo ello con un procesamiento sobre la marcha.

Más información ›

Products

Style Sheet for Instrument Cards Original

Apreo ChemiSEM System

  • Integrated SEM imaging and chemical characterization
  • Enhanced automation to simplify workflows
  • Extended source lifetime and schedulable upgrades

AutoScript TEM

  • Provides a direct link between research needs and microscope automation
  • Enables improved reproducibility and accuracy
  • Focuses time on the microscope for higher throughput

FIB-SEM and Laser Ablation

  • All three beams have same coincident point for accurate and repeatable cut placement
  • Millimeter-scale cross sections with up to 15,000x faster material removal than a typical FIB
  • Statistically relevant deep subsurface and 3D data analysis

Thermo Scientific Helios Hydra plasma focused ion beam scanning electron microscope (DualBeam)

Helios Hydra DualBeam

  • 4 fast switchable ion species (Xe, Ar, O, N) for optimized PFIB processing of a widest range of materials
  • Ga-free TEM sample preparation
  • Extreme high resolution SEM imaging

Helios 5 HX/Helios 5 UX/Helios 5 FX DualBeam

  • Fully automated, high-quality, ultra-thin TEM sample preparation
  • High throughput, high resolution subsurface and 3D characterization
  • Rapid nanoprototyping capabilities

Helios 5 PFIB DualBeam

  • Gallium-free STEM and TEM sample preparation
  • Multi-modal subsurface and 3D information
  • Next-generation 2.5 μA xenon plasma FIB column
Thermo Scientific Scios 2 plasma focused ion beam scanning electron microscope (DualBeam)

Scios 3 FIB-SEM

  • Full support of magnetic and non-conductive samples
  • High throughput subsurface and 3D characterization
  • Advanced ease of use and automation capabilities

Spectra Ultra

  • New imaging and spectroscopy capabilities on the most beam sensitive materials
  • A leap forward in EDX detection with Ultra-X
  • Column designed to maintain sample integrity.

Spectra 300

  • Highest-resolution structural and chemical information at the atomic level
  • Flexible high-tension range from 30-300 kV
  • Three lens condenser system

Spectra 200

  • High-resolution and contrast imaging for accelerating voltages from 30-200 kV
  • Symmetric S-TWIN/X-TWIN objective lens with wide-gap pole piece design of 5.4 mm
  • Sub-Angstrom STEM imaging resolution from 60 kV-200 kV
Thermo Scientific Talos L120C transmission electron microscope (TEM)

Talos 12 TEM

  • Proven and versatile (S)TEM
  • Multidisciplinary 120 kV TEM
  • TEM magnification range of 25X to 650kX
  • EDS and STEM options for compositional analyses

Talos F200X TEM

  • High-resolution, EDS cleanliness, and quality in 2D as well as 3D
  • X-FEG and X-CFEG available for the highest brightness and energy resolution
  • High accuracy and repeatable results with integrated Thermo Scientific Velox Software
Thermo Scientific Talos F200C transmission electron microscope (TEM)

Talos F200C TEM

  • High-contrast and high-quality TEM and STEM imaging
  • 4k x 4k Ceta CMOS camera options for large FOV and high read-out speeds
  • Large pole piece gap and multiple in situ options

Talos F200i TEM

  • Compact design with X-TWIN objective lens
  • Available with S-FEG, X-FEG, and X-CFEG
  • Flexible and fast EDS options for comprehensive elemental analysis

Talos F200S TEM

  • Intuitive and easy-to-use automation software
  • Available with Super-X EDS for rapid quantitative chemical analysis
  • High-throughput with simultaneous multi-signal acquisition

Axia ChemiSEM

  • Live quantitative elemental mapping
  • High fidelity scanning electron microscopy imaging
  • Flexible and easy to use, even for novice users
  • Easy maintenance

VolumeScope 2 SEM

  • Isotropic 3D data from large volumes
  • High contrast and resolution in high and low vacuum modes
  • Simple switch between normal SEM use and serial block-face imaging
Thermo Scientific Prisma E scanning electron microscope (SEM)

Prisma E SEM

  • Entry-level SEM with excellent image quality
  • Easy and quick sample loading and navigation for multiple samples
  • Compatible with a wide range of materials thanks to dedicated vacuum modes
Thermo Scientific Quattro E scanning electron microscope (SEM)

Quattro ESEM

  • Ultra-versatile high-resolution FEG SEM with unique environmental capability (ESEM)
  • Observe all information from all samples with simultaneous SE and BSE imaging in every mode of operation
Thermo Scientific Apreo 2 scanning electron microscope (SEM)

Apreo 2 SEM

  • High-performance SEM for all-round nanometer or sub-nanometer resolution
  • In-column T1 backscatter detector for sensitive, TV-rate materials contrast
  • Excellent performance at long working distance (10 mm)

Phenom ParticleX TC Desktop SEM

  • Versatile desktop SEM with automation software for Technical Cleanliness
  • Resolution <10 nm; magnification up to 200,000x
  • Optional SE detector

Phenom Pharos G2 Desktop FEG-SEM

  • FEG source with 1 – 20 kV acceleration voltage range
  • <2.0 nm (SE) and 3.0 nm (BSE) resolution @ 20 kV
  • Optional fully integrated EDS and SE detector

Phenom ParticleX AM Desktop SEM

  • Versatile desktop SEM with automation software for Additive Manufacturing
  • Resolution <10 nm; magnification up to 200,000x
  • Optional SE detector

Phenom ParticleX Battery Desktop SEM

  • Versatile solution for high-quality, in-house analysis
  • Automated system and analysis of multiple samples
  • Testing 10x faster

Avizo Software
Materials Science

  • Support for multi-data/multi-view, multi-channel, time series, very large data
  • Advanced multi-mode 2D/3D automatic registration
  • Artifact reduction algorithms
Thermo Scientific Maps electron microscopy software

Maps Software

  • Acquire high-resolution images over large areas
  • Easily find regions of interest
  • Automate image acquisition process
  • Correlate data from different sources

FiberMetric

  • Save time by automated measurements
  • Fast and automated collection of all statistical data
  • View and measure micro and nano fibers with unmatched accuracy

ParticleMetric

  • Integrated software in ProSuite for online and offline analysis
  • Correlating particle features such as diameter, circularity, aspect ratio and convexity
  • Creating image datasets with Automated Image Mapping

Elemental Mapping

  • Fast and reliable information on the distribution of elements within the sample or the selected line
  • Easily exported and reported results

3D Reconstruction

  • Intuitive user interface, maximum employability
  • Intuitive fully automated user interface
  • Based on 'shape from shading' technology, no stage tilt required

Nanobuilder

  • CAD-based prototyping
  • Fully automated job execution, stage navigation, milling, and deposition
  • Automated alignment and drift control
Thermo Scientific Inspect 3D tomography software

Inspect 3D Software

  • Image processing tools and filters for cross-correlation
  • Feature tracking for image alignment
  • Algebraic reconstruction technique for iterative projection comparison

Velox

  • An experiments panel on the left side of the processing window.
  • Live quantitative mapping
  • Interactive detector layout interface for reproducible experiment control and setup

Style Sheet to change H2 style to p with em-h2-header class

Contact us

Style Sheet for Support and Service footer
Style Sheet for Fonts
Style Sheet for Cards

Electron microscopy services for
the materials science

To ensure optimal system performance, we provide you access to a world-class network of field service experts, technical support, and certified spare parts.