Search
Search

Countless technical innovations are directly or indirectly linked to novel materials. To fuel continued innovation, researchers want to deepen their understanding of the physical and chemical properties of materials (morphological, structural, magnetic, thermal, and mechanical) at macro-, micro-, and nanoscales.
There are many reasons to understand and improve the properties of materials, thereby increasing their utility and value. Strength, ductility, density, corrosion resistance, and electrical conductance are just a few of the properties that can be vital for enhanced or even entirely new applications of a material.
In the fields of polymer and catalysis research, chemists and chemical engineers want to better understand the relationships between material structure and function at the micro- and nanometer scales. Their discoveries lead to new materials systems with targeted functionality, longer active lifetimes, lower replacement costs, improved strength, and better manufacturability.
The exciting field of nanodevices is focused on developing miniaturized technology with unique functionality for electronic, magnetic, mechanical, and optical systems. Sensors, actuators, and microfluidic devices are all in high demand to help solve global energy, communications, and critical monitoring challenges.
As scientists expand their knowledge of material structures, they also want to understand how materials behave in response to light, temperature, pressure, and other stimuli. Additionally, two-dimensional observations do not always yield answers in a three-dimensional world. Imaging, analysis, and materials characterization must therefore deliver real-world visibility by generating information in 3D under a variety of environmental conditions.
It is clear that innovative materials play essential roles in safety, clean energy, transportation, human health, and industrial productivity. Whether exploring alternative energy sources or developing stronger, lighter materials and sophisticated nanodevices, Thermo Fisher Scientific provides a broad range of spectroscopy and electron microscopy tools for the fundamental research and development of new materials.

El desarrollo de baterías se realiza mediante análisis multiescala con microCT, SEM y TEM, espectroscopía Raman, XPS y visualización y análisis 3D digital. Aprenda cómo este enfoque proporciona la información estructural y química necesaria para crear mejores baterías.

La microestructura polimérica determina las características y el rendimiento del material a granel. La microscopía electrónica permite un análisis exhaustivo en microescala de la morfología y composición de los polímeros para aplicaciones de control de calidad e I+D.

La producción eficaz de metales requiere un control preciso de las inclusiones y precipitados. Nuestras herramientas automatizadas pueden realizar varias tareas cruciales para el análisis de metales, incluyendo el recuento de nanopartículas, el análisis químico EDS y la preparación de muestras de TEM.

Los catalizadores son cruciales para la mayoría de los procesos industriales modernos. Su eficacia depende de la composición microscópica y la morfología de las partículas catalíticas; EM con EDS es ideal para estudiar estas propiedades.

La investigación de materiales novedosos presta cada vez más atención a la estructura de materiales de baja dimensión. La microscopía electrónica de transmisión de barrido con corrección de sonda y monocromación permite la adquisición de imágenes de materiales bidimensionales de alta resolución.

Los materiales tienen propiedades sustancialmente diferentes en la nanoescala y en la macroescala. Para estudiarlos, la instrumentación S/TEM se puede combinar con la espectroscopia de rayos X por dispersión de energía para obtener datos de resolución nanométrica, o incluso subnanométrica.

Todos los componentes de un vehículo moderno están diseñados para garantizar la máxima seguridad, eficacia y rendimiento. La caracterización detallada de materiales de automoción con microscopía electrónica y espectroscopía informa sobre decisiones cruciales sobre procesos, mejoras de productos y nuevos materiales.

Preparación de muestras (S)TEM
Los microscopios DualBeam permiten la preparación de muestras ultrafinas de alta calidad para el análisis (S)TEM. Gracias a la automatización avanzada, los usuarios con cualquier nivel de experiencia pueden obtener resultados de nivel experto para una amplia gama de materiales.

Caracterización de materiales en 3D
El desarrollo de materiales suele requerir caracterización en 3D en varias escalas. Los instrumentos DualBeam permiten el corte en secciones en serie de grandes volúmenes y la posterior adquisición de imágenes SEM a escala de nanómetro, las cuales se pueden procesar en reconstrucciones 3D de la muestra de alta calidad.

Creación de prototipos a nanoescala
A medida que la tecnología continúa miniaturizándose, la demanda de dispositivos y estructuras a nanoescala está aumentando. La creación de prototipos a nanoescala en 3D con instrumentos DualBeam le ayuda a diseñar, crear e inspeccionar rápidamente prototipos funcionales microscópicos y a nanoescala.
_Technique_800x375_144DPI.jpg)
Análisis elemental EDS
EDS proporciona información de composición vital sobre las observaciones de microscopio electrónico. En concreto, nuestros exclusivos sistemas de detectores Super-X y Dual-X añaden opciones para mejorar el rendimiento y/o la sensibilidad, permitiendo optimizar la adquisición de datos para cumplir con sus prioridades de investigación.
_Technique_800x375_144DPI.jpg)
Tomografía EDS en 3D
La investigación de materiales modernos depende cada vez más del análisis a nanoescala en tres dimensiones. La caracterización en 3D, incluidos los datos de composición para el contexto químico y estructural completo, es posible con EM en 3D y espectroscopia de rayos X dispersiva.

Asignación elemental a escala atómica con EDS
El EDS de resolución atómica proporciona un contexto químico incomparable para el análisis de materiales al diferenciar la identidad elemental de los átomos individuales. Cuando se combina con TEM de alta resolución, es posible observar la organización precisa de los átomos en una muestra.

ColorSEM
Mediante la utilización de EDS en tiempo real (espectroscopia de rayos X por dispersión de energía) con cuantificación en tiempo real, la tecnología ColorSEM transforma las imágenes SEM en una técnica de color. Cualquier usuario puede adquirir datos elementales de forma continua para obtener información más completa que nunca.
_Technique_800x375_144DPI.jpg)
Adquisición de imágenes con HRSTEM y HRTEM
La microscopía electrónica de transmisión es muy valiosa para caracterizar la estructura de nanopartículas y nanomateriales. EL TEM y STEM de alta resolución permiten obtener datos de resolución atómica junto con información sobre la composición química.
_Technique_800x375_144DPI.jpg)
Adquisición de imágenes de contraste de fase diferencial
La investigación electrónica moderna se basa en el análisis a nanoescala de las propiedades eléctricas y magnéticas. El contraste de fase diferencial STEM (DPC-STEM) puede obtener imágenes de la fuerza y la distribución de los campos magnéticos en una muestra y mostrar la estructura de dominio magnético.

Adquisición de imágenes de muestras calientes
El estudio de los materiales en condiciones reales suele implicar el trabajo a altas temperaturas. El comportamiento de los materiales cuando se recristalizan, derriten, deforman o reaccionan ante el calor se puede estudiar in situ con la microscopía electrónica de barrido o con las herramientas DualBeam.
_Technique_800x375_144DPI.jpg)
SEM ambiental (ESEM)
El SEM ambiental permite que se adquieran imágenes de los materiales en su estado nativo. Esto es ideal para investigadores académicos e industriales que necesitan probar y analizar muestras húmedas, sucias, reactivas, con liberación de gases o que no son compatibles con el vacío.

Espectroscopía de pérdida de energía de electrones
La investigación en ciencias de los materiales se beneficia de la EELS de alta resolución para una amplia gama de aplicaciones analíticas. Esto incluye asignación elemental de alto rendimiento, alta relación señal-ruido, así como sondeo de estados de oxidación y fonones de superficie.

Corte transversal
El corte transversal proporciona una visión adicional, ya que descubre información de la subsuperficie. Los instrumentos DualBeam tienen columnas FIB para poder realizar el corte transversal con alta calidad. Con la automatización, se puede realizar el procesamiento de muestras de alto rendimiento sin supervisión.

Experimentación in situ
La observación directa y en tiempo real de los cambios microestructurales con microscopía electrónica es necesaria para comprender los principios subyacentes de los procesos dinámicos como la recristalización, el crecimiento del grano y la transformación de fases durante el calentamiento, refrigeración y humectación.

Análisis de partículas
El análisis de partículas juega un papel vital en la investigación de nanomateriales y el control de calidad. La resolución a escala nanométrica y la adquisición de imágenes superiores de microscopía electrónica se pueden combinar con software especializado para la rápida caracterización de polvos y partículas.

Catodoluminiscencia
La catodoluminiscencia (CL) describe la emisión de luz de un material cuando se excita por un haz de electrones. Esta señal, captada por un detector de CL especializado, contiene información sobre la composición de la muestra, defectos de cristal o propiedades fotónicas.

SIMS
El detector TOF-SIMS (espectrometría de masas de iones secundaria de tecnología de tiempo de vuelo) para microscopía electrónica de tecnología barrido de haz de iones (FIB-SEM) permite la caracterización analítica de alta resolución de todos los elementos de la tabla periódica, incluso a bajas concentraciones.

Análisis de escala múltiple
Los novedosos materiales se deben analizar a una resolución cada vez mayor, manteniendo el contexto más amplio de la muestra. El análisis de escala múltiple permite la correlación de varias herramientas y modalidades de obtención de imágenes, tales como microTC de rayos X, DualBeam, PFIB láser, SEM y TEM.

Preparación de muestras de APT
La tomografía de sonda atómica (APT) proporciona un análisis de composición de materiales en 3D con resolución atómica. La microscopía Focused ion beam (FIB) es una técnica esencial para la preparación de muestras de alta calidad, orientación y sitio específico para la caracterización de APT.

Flujo de trabajo de partículas automatizado
El flujo de trabajo de nanopartículas automatizado (APW) es un flujo de trabajo de microscopio electrónico de transmisión para el análisis de nanopartículas que proporciona adquisición de imágenes de área extensa y de alta resolución, además de adquisición de datos en nanoescala, todo ello con un procesamiento sobre la marcha.

Preparación de muestras (S)TEM
Los microscopios DualBeam permiten la preparación de muestras ultrafinas de alta calidad para el análisis (S)TEM. Gracias a la automatización avanzada, los usuarios con cualquier nivel de experiencia pueden obtener resultados de nivel experto para una amplia gama de materiales.

Caracterización de materiales en 3D
El desarrollo de materiales suele requerir caracterización en 3D en varias escalas. Los instrumentos DualBeam permiten el corte en secciones en serie de grandes volúmenes y la posterior adquisición de imágenes SEM a escala de nanómetro, las cuales se pueden procesar en reconstrucciones 3D de la muestra de alta calidad.

Creación de prototipos a nanoescala
A medida que la tecnología continúa miniaturizándose, la demanda de dispositivos y estructuras a nanoescala está aumentando. La creación de prototipos a nanoescala en 3D con instrumentos DualBeam le ayuda a diseñar, crear e inspeccionar rápidamente prototipos funcionales microscópicos y a nanoescala.
_Technique_800x375_144DPI.jpg)
Análisis elemental EDS
EDS proporciona información de composición vital sobre las observaciones de microscopio electrónico. En concreto, nuestros exclusivos sistemas de detectores Super-X y Dual-X añaden opciones para mejorar el rendimiento y/o la sensibilidad, permitiendo optimizar la adquisición de datos para cumplir con sus prioridades de investigación.
_Technique_800x375_144DPI.jpg)
Tomografía EDS en 3D
La investigación de materiales modernos depende cada vez más del análisis a nanoescala en tres dimensiones. La caracterización en 3D, incluidos los datos de composición para el contexto químico y estructural completo, es posible con EM en 3D y espectroscopia de rayos X dispersiva.

Asignación elemental a escala atómica con EDS
El EDS de resolución atómica proporciona un contexto químico incomparable para el análisis de materiales al diferenciar la identidad elemental de los átomos individuales. Cuando se combina con TEM de alta resolución, es posible observar la organización precisa de los átomos en una muestra.

ColorSEM
Mediante la utilización de EDS en tiempo real (espectroscopia de rayos X por dispersión de energía) con cuantificación en tiempo real, la tecnología ColorSEM transforma las imágenes SEM en una técnica de color. Cualquier usuario puede adquirir datos elementales de forma continua para obtener información más completa que nunca.
_Technique_800x375_144DPI.jpg)
Adquisición de imágenes con HRSTEM y HRTEM
La microscopía electrónica de transmisión es muy valiosa para caracterizar la estructura de nanopartículas y nanomateriales. EL TEM y STEM de alta resolución permiten obtener datos de resolución atómica junto con información sobre la composición química.
_Technique_800x375_144DPI.jpg)
Adquisición de imágenes de contraste de fase diferencial
La investigación electrónica moderna se basa en el análisis a nanoescala de las propiedades eléctricas y magnéticas. El contraste de fase diferencial STEM (DPC-STEM) puede obtener imágenes de la fuerza y la distribución de los campos magnéticos en una muestra y mostrar la estructura de dominio magnético.

Adquisición de imágenes de muestras calientes
El estudio de los materiales en condiciones reales suele implicar el trabajo a altas temperaturas. El comportamiento de los materiales cuando se recristalizan, derriten, deforman o reaccionan ante el calor se puede estudiar in situ con la microscopía electrónica de barrido o con las herramientas DualBeam.
_Technique_800x375_144DPI.jpg)
SEM ambiental (ESEM)
El SEM ambiental permite que se adquieran imágenes de los materiales en su estado nativo. Esto es ideal para investigadores académicos e industriales que necesitan probar y analizar muestras húmedas, sucias, reactivas, con liberación de gases o que no son compatibles con el vacío.

Espectroscopía de pérdida de energía de electrones
La investigación en ciencias de los materiales se beneficia de la EELS de alta resolución para una amplia gama de aplicaciones analíticas. Esto incluye asignación elemental de alto rendimiento, alta relación señal-ruido, así como sondeo de estados de oxidación y fonones de superficie.

Corte transversal
El corte transversal proporciona una visión adicional, ya que descubre información de la subsuperficie. Los instrumentos DualBeam tienen columnas FIB para poder realizar el corte transversal con alta calidad. Con la automatización, se puede realizar el procesamiento de muestras de alto rendimiento sin supervisión.

Experimentación in situ
La observación directa y en tiempo real de los cambios microestructurales con microscopía electrónica es necesaria para comprender los principios subyacentes de los procesos dinámicos como la recristalización, el crecimiento del grano y la transformación de fases durante el calentamiento, refrigeración y humectación.

Análisis de partículas
El análisis de partículas juega un papel vital en la investigación de nanomateriales y el control de calidad. La resolución a escala nanométrica y la adquisición de imágenes superiores de microscopía electrónica se pueden combinar con software especializado para la rápida caracterización de polvos y partículas.

Catodoluminiscencia
La catodoluminiscencia (CL) describe la emisión de luz de un material cuando se excita por un haz de electrones. Esta señal, captada por un detector de CL especializado, contiene información sobre la composición de la muestra, defectos de cristal o propiedades fotónicas.

SIMS
El detector TOF-SIMS (espectrometría de masas de iones secundaria de tecnología de tiempo de vuelo) para microscopía electrónica de tecnología barrido de haz de iones (FIB-SEM) permite la caracterización analítica de alta resolución de todos los elementos de la tabla periódica, incluso a bajas concentraciones.

Análisis de escala múltiple
Los novedosos materiales se deben analizar a una resolución cada vez mayor, manteniendo el contexto más amplio de la muestra. El análisis de escala múltiple permite la correlación de varias herramientas y modalidades de obtención de imágenes, tales como microTC de rayos X, DualBeam, PFIB láser, SEM y TEM.

Preparación de muestras de APT
La tomografía de sonda atómica (APT) proporciona un análisis de composición de materiales en 3D con resolución atómica. La microscopía Focused ion beam (FIB) es una técnica esencial para la preparación de muestras de alta calidad, orientación y sitio específico para la caracterización de APT.

Flujo de trabajo de partículas automatizado
El flujo de trabajo de nanopartículas automatizado (APW) es un flujo de trabajo de microscopio electrónico de transmisión para el análisis de nanopartículas que proporciona adquisición de imágenes de área extensa y de alta resolución, además de adquisición de datos en nanoescala, todo ello con un procesamiento sobre la marcha.
To ensure optimal system performance, we provide you access to a world-class network of field service experts, technical support, and certified spare parts.
