CellROX™ grünes Reagenz für den Nachweis von oxidativem Stress
CellROX™ grünes Reagenz für den Nachweis von oxidativem Stress
Invitrogen™

CellROX™ grünes Reagenz für den Nachweis von oxidativem Stress

CellROX™ Green Reagent ist eine neuartige fluorogene Sonde zur Messung des oxidativen Stresses in lebenden Zellen. Der membrangängige Farbstoff istWeitere Informationen
Have Questions?
KatalognummerMenge
C10444250 μl
Katalognummer C10444
Preis (EUR)
500,24
Special offer
Online exclusive
Endet: 15-Mar-2026
676,00
Ersparnis 175,76 (26%)
Each
Zum Warenkorb hinzufügen
Menge:
250 μl
Preis (EUR)
500,24
Special offer
Online exclusive
Endet: 15-Mar-2026
676,00
Ersparnis 175,76 (26%)
Each
Zum Warenkorb hinzufügen
CellROX™ Green Reagent ist eine neuartige fluorogene Sonde zur Messung des oxidativen Stresses in lebenden Zellen. Der membrangängige Farbstoff ist in reduziertem Zustand schwach fluoreszierend und zeigt bei Oxidation durch reaktive Sauerstoffspezies (ROS) eine hellgrüne photostabile Fluoreszenz und anschließende Bindung an die DNA bei einem Absorptions- bzw. Emissionmaximum von ∼485 bzw. 520 nm. Dieses Reagenz kann mit Formaldehyd fixiert werden und sein Signal übersteht die Behandlung mit Reinigungsmitteln, wodurch es mit anderen kompatiblen Farbstoffen und Antikörpern Multiplex-fähig ist.

CellROX™ grünes Reagenz ist mit verschiedenen Plattformen kompatibel, wie der herkömmlichen Fluoreszenzmikroskopie, dem High-Content-Screening (HCS), der Durchflusszytometrie und der mikrotiterplattenbasierten Fluorometrie oder dem High-Throughput-Screening (HTS). Dieses Reagenz ist auch mit verschiedenen Tischgeräten kompatibel, z. B. unseren FLoid™, Tali™ und Attune™ Instrumenten.

Darüber hinaus bietet das CellROX™ grüne Reagenz folgende Vorteile:

• Kompatibel mit anderen Lebendzellfarbstoffen, Antikörpern und Zellen, die RFP exprimieren
• Geliefert als stabile, gebrauchsfertige DMSO-Lösung mit einem einfachen, waschfreien Protokoll, kompatibel mit standardmäßigen Arbeitsabläufen in der Fluoreszenzmikroskopie
• Lieferung in fünf Einwegfläschchen mit ausreichender Gesamtreagenzmenge für fünf 96-Well-Platten oder 100 Deckgläser

Oxidativer Stress entsteht durch ein Ungleichgewicht zwischen der Produktion von reaktiven Sauerstoffspezies (ROS) und der Fähigkeit der Zellen, diese zu neutralisieren. ROS spielen eine wichtige Rolle beim Fortschreiten verschiedener Erkrankungen, zu denen Entzündungen, Atherosklerose, Alterungsprozesse und altersbedingte degenerative Erkrankungen gehören.

Nur für Forschungszwecke. Nicht für therapeutische oder diagnostische Zwecke an Tieren und Menschen vorgesehen.
Nur für Forschungszwecke. Nicht zur Verwendung bei diagnostischen Verfahren.
Specifications
FarbeGrün
Konzentration2.5 mM stabilized solution in DMSO
Zur Verwendung mit (Geräte)Imaging, HCS, Cytometer
FormatGefroren
Menge250 μl
NachweisverfahrenLive Cell Imaging
Excitation/Emission485/520 nm
IndicatorOxidative stress
ProduktlinieCellROX
Unit SizeEach
Inhalt und Lagerung
Store at ≤–20°C. Protect from light and desiccate.

Häufig gestellte Fragen (FAQ)

I need a formaldehyde-fixable reactive oxygen species detection assay. Is H2 DCFDA fixable?

H2DCFDA and similar derivatives are not fixable. The same goes for dihydroethidium and dihydrorhodamine. However, CellROX Deep Red and CellROX Green are retained for a limited time upon fixation with formaldehyde. CellROX Green may be retained upon subsequent Triton X-100 permeabilization. Avoid the use of any acetone or alcohol-based fixatives or fixatives that include alcohol, such as formalin.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Can CellROX Green dye diluted in DMSO be subjected to freeze-thaw cycles?

CellROX Green dye diluted in a DMSO stock solution is stable for multiple freeze-thaw cycles, but it is not stable long-term in aqueous solution. Please note, every time the stock solution is opened, some of the dye can oxidize, which will increase background noise. DMSO readily absorbs moisture from the air, especially when cold, so be sure to completely thaw the stock solution to room temperature before opening and only open briefly. Water in the DMSO will gradually cause the dye to precipitate and come out of solution. Minimize the number of times you use a stock solution to several freeze-thaw cycles or make small aliquots to reduce the number of freeze-thaw cycles.

Find additional tips, troubleshooting help, and resources within our Flow Cytometry Support Center.

What is the difference between the CellROX Green Flow Cytometry Assay Kit (Cat. No. C10492) and CellROX Green Reagent, for oxidative stress detection (Cat. No. C10444)?

The main difference between the CellROX Green Flow Cytometry Assay Kit (Cat. No. C10492) and CellROX Green Reagent, for oxidative stress detection (Cat. No. C10444), is the suggested final working concentrations and application. The CellROX Green in the CellROX Green Flow Cytometry Assay Kit is specifically designed for flow cytometry analysis and is used at a lower concentration than what is required for imaging, as fluorescence-activated cell sorting (FACS) is a very sensitive detection system.

The standalone CellROX Green Reagent (Cat. No. C10444) is marketed for fluorescent microscopy and require working concentrations appropriate for imaging. This can typically be as much as 10-fold higher than the concentration recommended for flowcytometry. The standalone CellROX Green Reagent can also be used for flowcytometry; however, the working concentration will have to be optimized. For the flow cytometry quick reference, use the link below.

CellROX Flow Cytometry Assay Kit Quick Reference

Find additional tips, troubleshooting help, and resources within our Flow Cytometry Support Center.

What dyes can I use to detect reactive oxygen species (ROS) in my bacteria?

Many dyes that are used on mammalian cells have also been shown to be useful in bacterial cells. For example, CellROX Deep Red Reagent has been shown to work in B. subtilis (see Reference: http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/RaatschenNadja/diss.pdf). If you are interested in a particular dye, but are not sure if it will work on your bacteria, literature searches are the best way to check to see if it has been tested. If not, then it may be worth testing yourself.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I am trying to label my cells with a reactive oxygen species (ROS) indicator dye, but I am not seeing a significant difference in signal. What could be happening?

First, make sure you have both a negative (untreated) and positive (ROS-induced) sample to compare. A good positive control can be the use of 100 µM menadione for one hour or 50 µM nefazodone for 24 hours. H2O2 can also be used, though it does not work well for CellROX dyes. Some dyes, such as H2DCFDA, require esterase cleavage, so don't incubate in the presence of serum (which contains esterases that can prematurely cleave the dye). If your positive control does not show significant change compared to the negative control, try increasing the concentration and label time for the dye. Our manuals give starting recommendations. Be sure to image your live cells as soon as possible. Only two dyes (CellROX Green and CellROX Deep Red) are retained with formaldehyde fixation. Finally, make sure you are using filters and instrument settings to match the excitation and emission spectra of the dye.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Zitierungen und Referenzen (34)

Zitierungen und Referenzen
Abstract
Arsenic increases Pi-mediated vascular calcification and induces premature senescence in vascular smooth muscle cells.
Authors:Martín-Pardillos A, Sosa C, Sorribas V,
Journal:Toxicol Sci
PubMed ID:23104429
Several mechanisms have been proposed to explain the vascular toxicity of arsenic. Some of them are described in this work, such as stress-induced premature senescence (SIPS), dedifferentiation, and medial vascular calcification, and they all affect vascular smooth muscle cells (VSMC). Rat aortic VSMC were treated with 1-100 µM of either ... More
Damage-associated molecular pattern activated Toll-like receptor 4 signalling modulates blood pressure in L-NAME-induced hypertension.
Authors:Sollinger D, Eißler R, Lorenz S, Strand S, Chmielewski S, Aoqui C, Schmaderer C, Bluyssen H, Zicha J, Witzke O, Scherer E, Lutz J, Heemann U, Baumann M,
Journal:
PubMed ID:24302630
'Recent publications have shed new light on the role of the adaptive and innate immune system in the pathogenesis of hypertension. However, there are limited data whether receptors of the innate immune system may influence blood pressure. Toll-like receptor 4 (TLR4), a pattern recognition receptor, is a key component of ... More
Sigma receptor ligand, (+)-pentazocine, suppresses inflammatory responses of retinal microglia.
Authors:Zhao J, Ha Y, Liou GI, Gonsalvez GB, Smith SB, Bollinger KE,
Journal:
PubMed ID:24812552
'To evaluate the effects of the s 1 receptor (sR1) agonist, (+)-pentazocine, on lipopolysaccharide (LPS)-induced inflammatory changes in retinal microglia cells. Retinal microglia cells were isolated from Sprague-Dawley rat pups. Cells were treated with LPS with or without (+)-pentazocine and with or without the sR1 antagonist BD1063. Morphologic changes were ... More
Ubiquilin-1 protects cells from oxidative stress and ischemic stroke caused tissue injury in mice.
Authors:Liu Y, Lü L, Hettinger CL, Dong G, Zhang D, Rezvani K, Wang X, Wang H,
Journal:
PubMed ID:24553923
Ubiquilin-1 (Ubqln1 or Ubqln), a ubiquitin-like protein, mediates degradation of misfolded proteins and has been implicated in a number of pathological and physiological conditions. To better understand its function in vivo, we recently generated transgenic (Tg) mice that globally overexpress mouse Ubqln in a variety of tissues and ubqln conditional ... More
Loss of the m-AAA protease subunit AFG3L2 causes mitochondrial transport defects and tau hyperphosphorylation.
Authors:Kondadi AK, Wang S, Montagner S, Kladt N, Korwitz A, Martinelli P, Herholz D, Baker MJ, Schauss AC, Langer T, Rugarli EI,
Journal:
PubMed ID:24681487
The m-AAA protease subunit AFG3L2 is involved in degradation and processing of substrates in the inner mitochondrial membrane. Mutations in AFG3L2 are associated with spinocerebellar ataxia SCA28 in humans and impair axonal development and neuronal survival in mice. The loss of AFG3L2 causes fragmentation of the mitochondrial network. However, the ... More