Novex™ Tricine Mini Protein Gels, 10%, 1.0 mm
Run Invitrogen Mini Protein Gels in Bio-Rad's Mini-PROTEAN® Tetra Cell. Click here for more information.
Novex™ Tricine Mini Protein Gels, 10%, 1.0 mm
Invitrogen™

Novex™ Tricine Mini Protein Gels, 10%, 1.0 mm

Invitrogen Novex Tricin-Gele ermöglichen die Trennung von Proteinen und Peptiden mit niedrigem Molekulargewicht. In diesem System ersetzt Tricin das Glycin im Laufpuffer, was zu einer effizienteren Stapelung und Entstapelung von Proteinen mit niedriger Molekülmasse und einer höheren Auflösung kleinerer Peptide führt.
Have Questions?
Ansicht ändernbuttonViewtableView
KatalognummerWells
EC6675BOX10-Well
EC66752BOX12-Well
Katalognummer EC6675BOX
Preis (EUR)
283,00
Each
Zum Warenkorb hinzufügen
Wells:
10-Well
Preis (EUR)
283,00
Each
Zum Warenkorb hinzufügen
Invitrogen Novex Tricin-Gele ermöglichen die Trennung von Proteinen und Peptiden mit niedrigem Molekulargewicht. Das Tricin-System ist eine Modifikation des von Schägger und von Jagow (Schägger und von Jagow, 1987) speziell für Peptide und niedermolekulare Proteine entwickelten Tris-Glycin-diskontinuierlichen Puffersystems. In diesem System ersetzt Tricin das Glycin im Laufpuffer, was zu einer effizienteren Stapelung und Entstapelung von Proteinen mit niedriger Molekülmasse und einer höheren Auflösung kleinerer Peptide führt.

Merkmale von Novex Tricin-Proteingelen:
• Höhere Auflösung von Proteinen mit bis zu 2 kDa Molekülmasse
• Verbesserte Kompatibilität mit direkter Sequenzierung von Proteinen nach der Übertragung auf PVDF
• Minimierte Proteinmodifikation durch den niedrigeren pH-Wert des Tricin-Puffersystems

Formulierung
Invitrogen Tricin-Gele werden mit hochreinen, streng qualitätskontrollierten Reagenzien hergestellt: Tris-Basis, HCl, Acrylamid, Bis-Acrylamid, TEMED, APS und hochreines Wasser. Unsere Tricin-Gele bestehen aus einem 4 %-Stapelgel und enthalten kein SDS. Das Tricin-System erfordert SDS in der Probe und Elektrophoresepuffer für optimale Ergebnisse.

Wählen Sie das richtige Tricin-Gel für Ihre Proteintrennung
Invitrogen Tricin-Gele sind in drei Polyacrylamid-Konzentrationen von 10 %, 16 % und mit einem Gradienten von 10 bis 20 % verfügbar. Wählen Sie aus unseren vielen Well-Formaten aus, einschließlich 10-, 12- und 15-Well. Tricin-Gele sind speziell für die denaturierende Gel-Elektrophorese formuliert. Für eine optimale Probenvorbereitung empfehlen wir den Tricin-SDS-Probenpuffer (LC1676) und für die optimale Trennung verwenden Sie den Tricin-SDS-Laufpuffer (LC1675).

Für den Transfer von Proteinen auf eine Membran empfehlen wir die Verwendung des Novex Tris-Glycin-Transferpuffers (LC3675), wenn Sie einen herkömmlichen Nasstransfer mit dem XCell II Blot-Modul (EI9051) oder dem Mini Blot-Modul (B1000) durchführen. Schneller halbtrockener Transfer mit dem Invitrogen Power Blotter bzw. schneller trockener Transfer mit dem iBlot 2 Gel-Transfergerät (IB21001).

For Research Use Only. Not for use in diagnostic procedures.
Specifications
Zur Verwendung mit (Geräte)Mini-Gel-Tank
Gel Thickness1,0 mm
Länge (metrisch)8 cm
TrennmodusMolekulargewicht
Menge10 Gele/Karton
Empfohlene AnwendungenDenaturierung
ProbenladevolumenBis zu 25 µl
Haltbarkeit16 Wochen
VersandbedingungNasseis
LagerungsbedingungenBei 2 bis 8 °C lagern. Nicht einfrieren.
Breite (metrisch)8 cm
Gelanteil (%)10 %
GelgrößeMini
GeltypTricin
ProduktlinieNovex
Trennbereich6 bis 200 kDa
TrennverfahrenDenaturierung
Wells10-Well
Unit SizeEach
Inhalt und Lagerung
Jede Packung enthält 10 Gele. Im Kühlschrank lagern (2 – 8 °C). Nicht einfrieren. Die Haltbarkeit beträgt 4 bis 8 Wochen, je nach Geltyp.

Häufig gestellte Fragen (FAQ)

Why do Invitrogen Tricine gels work better for smaller proteins and peptides?

The Tricine gel system, first described by Schagger and von Jagow in 1987, is a modification of the Laemmli Tris-Glycine system to allow for better resolution of smaller proteins and peptides. In the Laemmli system, the proteins are "stacked" in the porous top portion of the gel (stacking gel) between a highly mobile "leading" chloride ion present in the gel buffer and the slower "trailing" glycine ion supplied by the running buffer. These concentrated, thin bands of protein undergo sieving once they reach the resolving gel, which separates them by size.

The resolution of smaller proteins (under 5 kDa) is hindered by the continuous accumulation of free dodecyl-sulfate (DS) ions (from the SDS sample and running buffers) in the stack. This build-up of DS leads to convective mixing of the DS ions with the smaller proteins, causing fuzzy bands and decreased resolution. The mixing of the DS ions with the small proteins will also interfere with the fixing and staining process later. To solve this problem, Schagger and von Jagow replaced the trailing glycine ion with a faster moving Tricine trailing ion. Many small proteins which run with the stacked DS in the Tris Glycine system will separate from DS in the Tricine gel system, resulting in sharper, cleaner bands and better resolution.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

What does it mean when bands appear to be getting narrower (or "funneling") as they progress down a protein gel?

There may be too much beta-mercaptoethanol (BME), sample buffer salts, or dithiothreitol (DTT) in your samples. If the proteins are over-reduced, they can be negatively charged and actually repel each other across the lanes causing the bands to get narrower as they progress down the gel.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

What causes dumbbell- or barbell-shaped bands during protein electrophoresis?

Barbell-shaped bands are a result of loading too large a sample volume.

When a large sample volume is loaded, part of the sample tends to diffuse to the sides of the wells. When the run begins and the sample moves through the stacking portion of the gel, the sample will stack incompletely, causing a slight retardation of the portion of the sample that diffused to the sides of the wells.

This effect may be intensified in larger proteins, whose migration is more impeded in the low concentration acrylamide of the stacking gel.

To alleviate the problem, concentrate the protein and load a smaller volume. This gives a "thinner" starting zone.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

What can cause "streaking forward" or "frowning" of samples on a SDS-PAGE gel? How can the results be improved?

Some potential causes are:

1) Re-oxidation of protein during run

2) Protein has highly hydrophobic regions where protein can exclude SDS.

Steps you can take to improve results:

1) Reduce samples right before loading, and add antioxidant to running buffer. Do not use samples that have been stored in reducing agent.

2) Load sample with 2X sample buffer instead of 1X.

3) Add SDS to upper chamber buffer: try 0.1, 0.2, 0.3, and 0.4% (don't go any higher than 0.4%)

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

Will NP-40 affect the migration of the samples in the SDS-PAGE gel?

Yes. All detergents and even phospholipids in cell extracts will form mixed micelles with SDS and migrate down into the gel.

They can also interfere with the SDS:protein binding equilibrium. Most of the nonionic detergents significantly interfere with SDS-PAGE.

We recommend that you keep the ratio of SDS to lipid or other detergent at 10:1 (or greater) to minimize these effects.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

Zitierungen und Referenzen (5)

Zitierungen und Referenzen
Abstract
Immune response to Yersinia outer proteins and other Yersinia pestis antigens after experimental plague infection in mice.
Authors:Benner GE, Andrews GP, Byrne WR, Strachan SD, Sample AK, Heath DG, Friedlander AM,
Journal:Infect Immun
PubMed ID:10085037
'There is limited information concerning the nature and extent of the immune response to the virulence determinants of Yersinia pestis during the course of plague infection. In this study, we evaluated the humoral immune response of mice that survived lethal Y. pestis aerosol challenge after antibiotic treatment. Such a model ... More
Aggregation of the Fc epsilon RI in mast cells induces the synthesis of Fos-interacting protein and increases its DNA binding-activity: the dependence on protein kinase C-beta.
Authors:Lewin I, Jacob-Hirsch J, Zang ZC, Kupershtein V, Szallasi Z, Rivera J, Razin E,
Journal:J Biol Chem
PubMed ID:8576146
The ability of c-Fos to dimerize with various proteins creates transcription complexes which can exert their regulatory function on a variety of genes. One of the transcription factors that binds to c-Fos is the newly discovered Fos-interacting protein (FIP). In this report we present evidence for the regulation of the ... More
Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus
Authors:Sapra R, Verhagen MF, Adams MW
Journal:J Bacteriol
PubMed ID:10852873
Highly washed membrane preparations from cells of the hyperthermophilic archaeon Pyrococcus furiosus contain high hydrogenase activity (9.4 micromol of H(2) evolved/mg at 80 degrees C) using reduced methyl viologen as the electron donor. The enzyme was solubilized with n-dodecyl-beta-D-maltoside and purified by multistep chromatography in the presence of Triton X-100. ... More
Enzyme-substrate intermediate at a specific lysine residue is required for deoxyhypusine synthesis. The role of Lys329 in human deoxyhypusine synthase.
Authors:Joe YA, Wolff EC, Lee YB, Park MH,
Journal:J Biol Chem
PubMed ID:9405486
Deoxyhypusine synthase catalyzes the first step in the post-translational synthesis of hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine] in eukaryotic translation initiation factor 5A. We recently reported biochemical evidence for a covalent enzyme-substrate intermediate involving a specific lysine residue (Lys329) in human deoxyhypusine synthase (Wolff, E. C., Folk, J. E., and Park, M. H. (1997) ... More
Anti-tumor antibody BR96 blocks cell migration and binds to a lysosomal membrane glycoprotein on cell surface microspikes and ruffled membranes.
Authors:Garrigues J, Anderson J, Hellström KE, Hellström I,
Journal:J Cell Biol
PubMed ID:7511141
BR 96 is an internalizing antibody that binds to Lewis Y (Le(y)), a carbohydrate determinant expressed at high levels on many human carcinomas (Hellström, I., H. J. Garrigues, U. Garrigues, and K. E. Hellström. 1990. Cancer Res. 50:2183-2190). Breast carcinoma cell lines grown to confluence bind less BR96 than subconfluent ... More