Qdot™ 655 Streptavidin Conjugate
Qdot™ 655 Streptavidin Conjugate
Invitrogen™

Qdot™ 655 Streptavidin Conjugate

Qdot™ 655 Streptavidin-Konjugat enthält ein Biotin-bindendes Protein (Streptavidin), das kovalent an einen fluoreszierenden Marker (Qdot™ Nanokristall) gebunden ist. Streptavidin besitztWeitere Informationen
Have Questions?
Ansicht ändernbuttonViewtableView
KatalognummerMenge
Q10121MP200 μl
Q10123MP50 μl
Katalognummer Q10121MP
Preis (EUR)
920,00
Each
Zum Warenkorb hinzufügen
Menge:
200 μl
Preis (EUR)
920,00
Each
Zum Warenkorb hinzufügen
Qdot™ 655 Streptavidin-Konjugat enthält ein Biotin-bindendes Protein (Streptavidin), das kovalent an einen fluoreszierenden Marker (Qdot™ Nanokristall) gebunden ist. Streptavidin besitzt eine sehr hohe Bindungsaffinität für Biotin. Streptavidin-Konjugate werden häufig gemeinsam mit Biotin-Konjugaten zum spezifischen Nachweis verschiedenster Proteine, Proteinmotive, Nukleinsäuren und anderer Moleküle verwendet (z. B. kann ein an eine Protein-Zielstruktur gebundener biotinylierter Primär-Antikörper mithilfe von fluoreszenzmarkiertem Streptavidin nachgewiesen werden). Ähnliche Strategien kommen in zahlreichen Nachweisprotokollen zum Einsatz, einschließlich Western Blots, Durchflusszytometrie, Bildgebung und Mikroskopie sowie Mikrotiterplatten-Assays. Zudem gelangen sie bei Aufreinigungen für gezielte Fraktionierungen zur Anwendung. Qdot™ Nanokristall-Konjugate werden als 1 μM-Lösungen angeboten.

Wichtige Merkmale von Qdot™ Streptavidin-Konjugaten:
Streptavidin Qdot™ 655 Konjugat hat ein Emissionsmaximum von ∼ 655 nm
Ungefähr 5 bis 10 Streptavidine pro Qdot™ Nanokristall
Extrem photostabil und hell fluoreszierend
Effizient anregbar durch einlinige Anregungsquellen
Enge Emission, große Stokes-Verschiebung
Erhältlich in mehreren Farben
Ideal für Western Blots, Durchflusszytometrie, Bildgebung und Mikroskopie, Mikrotiterplatten-Assays und mehr

Eigenschaften von Qdot™ Nanokristallen
Das Qdot™ Streptavidin-Konjugat hat die Größe eines großen Makromoleküls oder Proteins (∼ 15 bis 20 nm) und stellt die hellste Klasse von Streptavidin-Nachweisreagenzien dar. Qdot™ Streptavidin-Konjugate werden aus nanometergroßen Kristallen eines Halbleitermaterials (CdSe) hergestellt, das mit einer zusätzlichen Halbleiterhülle (ZnS) zur Verbesserung der optischen Eigenschaften des Materials beschichtet ist. Die Qdot™ 705 und Qdot™ 800 Streptavidin-Konjugate mit CdSeTe werden auf ähnliche Weise hergestellt. Dieses Kern-Hülle-Material wird wiederum mit einer Polymerhülle beschichtet, die eine Konjugation der Materialien mit biologischen Molekülen ermöglicht und ihre optischen Eigenschaften erhält.

Es sind weitere fluoreszierende Konjugate von Streptavidin verfügbar
Wir bieten verschiedene andere Qdot™ Farben an. Oder probieren Sie das Qdot™ Streptavidin Sampler-Kit aus, das Qdot™ Streptavidin-Konjugate in sechs Farben enthält (525, 565, 585, 605, 655 und 705). Zusätzlich zu den Nanokristall-Konjugaten bieten wir eine große Auswahl an Streptavidin-Konjugaten, die mit Alexa Fluor™ Farbstoffen, Oregon Green™ Farbstoff, Enzym-Konjugaten und traditionellen Fluorophoren wie Texas Red™ Farbstoff, Fluorescein (FITC) und mehr konjugiert sind.

Erfahren Sie mehr über biotinylierte Konjugate
Wir bieten eine umfangreiche Palette an biotinylierten Konjugaten für die Verwendung in Biotin-Streptavidin-Nachweisstrategien.
• Verwenden Sie die Suchhilfe für Primär-Antikörper für die Suche nach biotinylierten Primär-Antikörpern
• Verwenden Sie die Auswahlhilfe für Sekundär-Antikörper für die Suche nach biotinylierten Sekundär-Antikörpern und biotinylierten Anti-Farbstoff- und Anti-Hapten-Antikörpern

Blockierung von endogenem Biotin
Natürlich vorkommende Biotine können Biotin-Streptavidin-Nachweismethoden beeinträchtigen. Nutzen Sie für Experimente mit fixierten und permeabilisierten Zellen unser Blockier-Kit für endogenes Biotin, um solche Interferenzen auf ein Minimum zu beschränken.

Nur für Forschungszwecke. Nicht für therapeutische oder diagnostische Zwecke an Tieren und Menschen vorgesehen.

Verwandte Links:

Erfahren Sie mehr über Avidin-Biotin-Nachweismethoden

Erfahren Sie mehr über Qdot™ Nanokristalle
Nur für Forschungszwecke. Nicht zur Verwendung bei diagnostischen Verfahren.
Specifications
Konzentration1 μM
ProdukttypStreptavidin-Konjugat (fluoreszierend)
Menge200 μl
VersandbedingungRaumtemperatur
KonjugatQdot 655
FormFlüssig
ProduktlinieQdot
Unit SizeEach
Inhalt und Lagerung
Im Kühlschrank lagern (2 bis 8 °C).

Häufig gestellte Fragen (FAQ)

I used a neuron-specific antibody to label my neurons. I can't get enough signal from my fluorescent dye conjugated primary antibody. What can I do to improve it?

Here are our recommendations:

Use one of our extensive selection of secondary antibodies conjugated to bright, photostable Alexa Fluor dyes. The degree of labeling for each conjugate is 2-8 fluorophores per IgG molecule, with potentially three secondary antibody-binding sites per primary antibody, providing signal amplification of approximately 10-20 fluorophores per primary antibody.
Alternatively, primary antibody labeling can be detected with a biotinylated secondary antibody in conjunction with either a fluorescent streptavidin or a streptavidin bridge followed by a biotinylated reporter such as Qdot biotin. Although processing times increase with additional incubation and endogenous biotin-blocking steps, detection sensitivity also improves as a result of the labeled streptavidin.
For low-abundance targets, signal amplification may be necessary for optimal signal-to-noise ratios. Tyramide signal amplification (TSA) is an enzyme-mediated detection method that utilizes the catalytic activity of horseradish peroxidase (HRP) to generate reactive fluorophore-labeled tyramide radicals. These short-lived tyramide radicals covalently couple to nearby residues, producing an amplified fluorescent signal localized at the HRP-target interaction site.
For improved detection sensitivity with rapidly bleaching dyes, our SlowFade Diamond or ProLong Diamond antifade reagents have been shown to increase photostability and reduce initial fluorescence quenching in fixed cells, fixed tissues, and cell-free preparations.
Please review this web page for further optimization tips (https://www.thermofisher.com/us/en/home/references/newsletters-and-journals/bioprobes-journal-of-cell-biology-applications/bioprobes-issues-2011/bioprobes-66-october-2011/guide-to-immunocytochemistry.html).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I have a very low-abundance antigen. How can I amplify my signal?

A common method for amplifying antibody detection is biotin-streptavidin detection, where a biotinylated secondary antibody is combined with subsequent labeling with a dye-conjugated streptavidin. This will amplify the signal by approximately 2-8 times, but endogenous biotin must be blocked beforehand. Another option is to use tyramide-signal amplification, where a horseradish peroxidase conjugate is used with a dye-labeled tyramide. This will amplify the signal by approximately 10-20 times, but endogenous peroxidase will need to be blocked. A final option may be to use a Qdot nanoparticle antibody or streptavidin conjugate, which can yield a signal as much as 40 times higher than a standard organic dye conjugate, depending on the Qdot color.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I am getting very high background with my Qdot streptavidin conjugate. Do you have any suggestions?

Here are some suggestions: Use the Qdot Incubation Buffer (Cat. No. Q20001MP). The included buffer is formulated specifically for improved signal-to-background ratios in most immunolabeling applications using the Qdot streptavidin conjugates. Alternate buffers may result in more variable staining and, in particular, may increase background staining. However, some specific applications may require other buffer conditions. Please see the protocol "Double-labeling Using Qdot Streptavidin conjugates."
Determine if the sample has a high level of endogenous biotin. Block the sample using an avidin-biotin pre-blocking step.
If you have used the Qdot Incubation Buffer and still get high nonspecific background, then it may be necessary to check other steps of your procedure. Blocking the sample with BSA or normal animal serum will generally decrease nonspecific binding of both antibodies and Qdot streptavidin conjugates. It is a good practice to dilute your primary and secondary antibodies in the blocking buffer. Some tissues such as spleen and kidney sections may contain endogenous biotin, which may contribute to non-specific signal. Endogenous biotin can be blocked with an avidin/biotin blocking kit (Cat. No. E21390).
Grainy staining or clumps of fluorescent material appear in the background.
Occasionally the BSA within the Qdot Incubation Buffer shows slight aggregation over time. It is necessary to remove this aggregate prior to labeling the sample with the Qdot streptavidin conjugate. Spin down the incubation mixture before addition to the sample. This can be accomplished by spinning the samples in a benchtop centrifuge (Eppendorf 5415) at 5,000 x g for 2 minutes. The material can also be passed over a 0.2 µm spin filter unit before you add it to the sample for staining to remove microscopic precipitates. If you are using a buffer that is different than the Qdot Incubation Buffer, this behavior can often be attributed to higher levels of NaCl or other salts in the incubation buffer, and may not be easily fixed with filtration. In this case, reduce the overall salt concentration.
Optimize concentration of biotinylated secondary antibodies.
Optimizing specific signal can often be achieved by adjusting the level of biotinylated antibody used instaining. High levels of biotinylated antibody are necessary to obtain specific labeling, but overly high levels will contribute to nonspecific binding of the antibody to the sample. Nonspecifically bound biotinylated antibody will bind to the Qdot streptavidin conjugate, resulting in higher staining of the background.
Optimize concentration of Qdot streptavidin conjugate.
Just as titration of primary and secondary antibodies is necessary to achieve optimal specific signal in immunolabeling applications, the level of the final probe should be optimized for each conjugate. In general, concentrations at or slightly below saturation should have the optimal signal-to-background ratio, while concentrations substantially higher than saturation will compromise the assay with higher background levels.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I am getting no signal with my Qdot streptavidin conjugate. What should I do?

Here are some suggestions:

Confirm imaging/detection setup suitability.
Make sure that you are using an appropriate filter set to detect the signal. Please consult Table 1 in the Qdot Biotin User Manual for a list of appropriate and optimal filters.
Check to see that Qdot conjugate is fluorescing using an alternative light source.
Qdot conjugates will normally fluoresce brightly under a hand-held ultraviolet lamp (long wave, such as the type used to visualize ethidium bromide on agarose gels). Although we have not seen pronounced loss of fluorescence of these materials under any storage conditions that we have investigated, we have not been able to examine all storage conditions. If the Qdot product does not appear to fluoresce under the long wave UV excitation, please contact Technical Support at techsupport@qdots.com. For a microscope, perform a spot test: place a small droplet (2 to 5 µL) of the quantum dot solution onto a clean slide (no coverslip) and examine under the appropriate filter set at low magnification.
Confirm the specificity and titer of primary antibody.
Make sure the antibody will recognize the intended targets. Make sure there is sufficient primary antibody bound to the targets. This verification can be performed by ELISA-based capture of the antigen of interest, or by other techniques that can be found in lab manuals such as the Current Protocols in Immunology.
For Qdot streptavidin conjugates, confirm biotinylation of antibody.
Make sure your antibodies are effectively biotinylated. It may be necessary to independently adjust the concentration of both the primary and secondary antibodies used in the assay to obtain optimal signal and minimal background.
PAP pen ink may quench signal.
Use an alternate method for isolating target areas on the slide. If your protocol requires the use of a PAP pen, we recommend the ImmEdge Hydrophobic Barrier Pen (Cat. No. H-4000) from Vector Labs.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What is the best way to remove white precipitate from my ITK Qdot nanocrystals?

Spinning your ITK Qdot nanocrystals at approximately 3,000 rpm for 3-5 minutes should remove the white precipitate from the supernatant. Use the supernatant immediately.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Zitierungen und Referenzen (47)

Zitierungen und Referenzen
Abstract
Tracking of quantum dot-labeled CFTR shows near immobilization by C-terminal PDZ interactions.
Authors:Haggie PM, Kim JK, Lukacs GL, Verkman AS
Journal:Mol Biol Cell
PubMed ID:16987954
'Mutations in cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel, cause cystic fibrosis. To investigate interactions of CFTR in living cells, we measured the diffusion of quantum dot-labeled CFTR molecules by single particle tracking. In multiple cell lines, including airway epithelia, CFTR diffused little in the plasma membrane, ... More
Tracking individual kinesin motors in living cells using single quantum-dot imaging.
Authors:Courty S, Luccardini C, Bellaiche Y, Cappello G, Dahan M
Journal:Nano Lett
PubMed ID:16834436
'We report a simple method using semiconductor quantum dots (QDs) to track the motion of intracellular proteins with a high sensitivity. We characterized the in vivo motion of individual QD-tagged kinesin motors in living HeLa cells. Single-molecule measurements provided important parameters of the motor, such as its velocity and processivity, ... More
Elucidation of intracellular recycling pathways leading to exocytosis of the Fc receptor, FcRn, by using multifocal plane microscopy.
Authors:Prabhat P, Gan Z, Chao J, Ram S, Vaccaro C, Gibbons S, Ober RJ, Ward ES
Journal:Proc Natl Acad Sci U S A
PubMed ID:17384151
'The intracellular events on the recycling pathway that lead from sorting endosomes to exocytosis at the plasma membrane are central to cellular function. However, despite intensive study, these processes are poorly characterized in spatial and dynamic terms. The primary reason for this is that, to date, it has not been ... More
Random walk of processive, quantum dot-labeled myosin Va molecules within the actin cortex of COS-7 cells.
Authors:Nelson SR, Ali MY, Trybus KM, Warshaw DM,
Journal:Biophys J
PubMed ID:19619465
'Myosin Va (myoVa) is an actin-based intracellular cargo transporter. In vitro experiments have established that a single myoVa moves processively along actin tracks, but less is known about how this motor operates within cells. Here we track the movement of a quantum dot (Qdot)-labeled myoVa HMM in COS-7 cells using ... More
Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays.
Authors:Geho D, Lahar N, Gurnani P, Huebschman M, Herrmann P, Espina V, Shi A, Wulfkuhle J, Garner H, Petricoin E, Liotta LA, Rosenblatt KP
Journal:Bioconjug Chem
PubMed ID:15898722
'Protein microarray technologies provide a means of investigating the proteomic content of clinical biopsy specimens in order to determine the relative activity of key nodes within cellular signaling pathways. A particular kind of protein microarray, the reverse-phase microarray, is being evaluated in clinical trials because of its potential to utilize ... More