CellLight™ Tubulin-GFP, BacMam 2.0
CellLight™ Tubulin-GFP, BacMam 2.0
Invitrogen™

CellLight™ Tubulin-GFP, BacMam 2.0

CellLight Tubulin-GFP, BacMam 2.0, provides an easy way to label tubulin with green fluorescent protein (GFP) in live cells. SimplyRead more
Catalog NumberQuantityTarget
C106131 mLCytoskeleton, Tubulin
Catalog number C10613
Price (JPY)
52,000
Each
Contact Us ›
Quantity:
1 mL
Target:
Cytoskeleton, Tubulin
CellLight Tubulin-GFP, BacMam 2.0, provides an easy way to label tubulin with green fluorescent protein (GFP) in live cells. Simply add the reagent to your cells, incubate overnight, and the cells are ready to image in the morning.

Want to label other cell structures? Learn more about CellLight fluorescent protein labeling tools

This ready-to-use construct is transfected into cells using BacMam 2.0 technology, where it expresses GFP fused to human tubulin. You can observe tubulin-GFP behavior in live cells with almost no cytotoxicity and label with multiple tracking or tracing dyes to image dynamic cellular processes.

Cells expressing CellLight constructs can also be fixed with formaldehyde for multiplexed imaging using immunocytochemical techniques.

CellLight Technology is:
Fast and convenient: simply add CellLight reagent to your cells, incubate overnight, and image—or store frozen, assay-ready cells for later use
Highly efficient: up to 90% transduction of a wide range of mammalian cell lines, including primary cells, stem cells, and neurons
Flexible: co-transduce more than one BacMam reagent for multiplex experiments or co-localization studies; tightly control expression levels by simply varying the dose
Less toxic: CellLight reagents are non-replicating in mammalian cells and are suitable for biosafety level (BSL) 1 handling

BacMam Technology
CellLight Tubulin-GFP, BacMam 2.0, is a fusion construct of human tubulin and emGFP, providing accurate and specific targeting to cellular tubulin-GFP. This fusion construct is packaged in the insect virus baculovirus, which does not replicate in human cells and is designated as safe to use with biosafety level (BSL) 1 in most laboratories. BacMam technology ensures that most mammalian cell types are transduced/transfected with high efficiency and minimal toxicity. This transient transfection can be detected after overnight incubation for up to five days—enough time to carry out most dynamic cellular analyses. Like any transfection/transduction technique, the BacMam method does not transfect/transduce all of the cells with equal efficiency, making it poorly suited to cellular population studies or automated imaging/counting. CellLight reagents are ideal for experiments where cellular or subcellular co-locatization is required, or for cellular function studies that need special resolution.

Visualize staining your cell without wasting your reagents, antibodies, or time with our new Stain-iT Cell Staining Simulator.

For Research Use Only. Not for use in diagnostic procedures.
Specifications
ColorGreen
Detection MethodFluorescence
Dye TypeGFP (EmGFP)
EmissionVisible
Excitation Wavelength Range488⁄510
For Use With (Equipment)Confocal Microscope, Fluorescence Microscope
FormLiquid
Product LineCellLight
Quantity1 mL
Shipping ConditionWet Ice
TargetCytoskeleton, Tubulin
TechniqueFluorescence Intensity
Label TypeFluorescent Dye
Product TypeTubulin
SubCellular LocalizationCytoskeleton, Tubulin
Unit SizeEach
Contents & Storage
Store at 2°C to 6°C, protected from light. Do Not Freeze.

Frequently asked questions (FAQs)

How can I increase the transduction efficiency with the BacMam 2.0 reagents such as the the CellLight and Premo products?

Try varying particle-to-cell ratio (PPC), incubation volume, temperature and, cell density (if adherent cells are transduced). For adherent cells, we recommend a confluence of about 70%. Following the PPC, adjusting the volume is the next best parameter to change to optimize protein expression. If that doesn't work, you can also use the BacMam Enhancer Kit (Cat. No. B10107).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Is there any way to preserve the CellLights labeling beyond 5 days?

Cells transduced with the CellLights reagents can be stored frozen for several months after transduction, without loss of expression.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Are the CellLights products toxic to cells?

If the viral particles are used at the level we recommend, they are very well tolerated by cells.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

For how long will the CellLights products label my cells?

The BacMam 2.0 CellLights typically express for 5 days after transduction.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What cell types can the CellLights products be used with?

The first generation BacMam reagents were shown to efficiently transduce over 90 cell types, including stable cell lines and primary cells. With BacMam 2.0, it is now possible to also efficiently transduce primary neurons and stem cells.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (9)

Citations & References
Abstract
Particles on the move: intracellular trafficking and asymmetric mitotic partitioning of nanoporous polymer particles.
Authors:Yan Y, Lai ZW, Goode RJ, Cui J, Bacic T, Kamphuis MM, Nice EC, Caruso F,
Journal:
PubMed ID:23713907
'Nanoporous polymer particles (NPPs) prepared by mesoporous silica templating show promise as a new class of versatile drug/gene delivery vehicles owning to their high payload capacity, functionality, and responsiveness. Understanding the cellular dynamics of such particles, including uptake, intracellular trafficking, and distribution, is an important requirement for their development as ... More
Advanced laboratory techniques for sample processing and immunolabeling using microwave radiation.
Authors:Ferris AM, Giberson RT, Sanders MA, Day JR,
Journal:J Neurosci Methods
PubMed ID:19520116
A better understanding of improved microwave technology has increased the benefits and versatility of the technique as it applies to all aspects of immunohistochemistry. The role of continuous magnetron power output (wattage) combined with precise control of sample heating demonstrated their significance to complex labeling protocols. Here, we present results ... More
Cytoskeletal control of CD36 diffusion promotes its receptor and signaling function.
Authors:Jaqaman K, Kuwata H, Touret N, Collins R, Trimble WS, Danuser G, Grinstein S,
Journal:Cell
PubMed ID:21854984
The mechanisms that govern receptor coalescence into functional clusters--often a critical step in their stimulation by ligand--are poorly understood. We used single-molecule tracking to investigate the dynamics of CD36, a clustering-responsive receptor that mediates oxidized LDL uptake by macrophages. We found that CD36 motion in the membrane was spatially structured ... More
Spreading of neurodegenerative pathology via neuron-to-neuron transmission of ß-amyloid.
Authors:Nath S, Agholme L, Kurudenkandy FR, Granseth B, Marcusson J, Hallbeck M,
Journal:J Neurosci
PubMed ID:22745479
Alzheimer's disease (AD) is the major cause of dementia. During the development of AD, neurofibrillary tangles progress in a fixed pattern, starting in the transentorhinal cortex followed by the hippocampus and cortical areas. In contrast, the deposition of ß-amyloid (Aß) plaques, which are the other histological hallmark of AD, does ... More
Baculovirus-mediated gene transfer into mammalian cells.
Authors:Boyce FM, Bucher NL,
Journal:Proc Natl Acad Sci U S A
PubMed ID:8637876
This paper describes the use of the baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) as a vector for gene delivery into mammalian cells. A modified AcMNPV virus was prepared that carried the Escherichia coli lacZ reporter gene under control of the Rous sarcoma virus promoter and mammalian RNA processing ... More