Involved in the processing of over 80% of all manufactured products, catalysts are a critical aspect of modern industry. Heterogeneous nanoparticle catalysts, in particular, are important for a number of modern, environmentally friendly processes such as the production of hydrogen fuel and are found ubiquitously in automotive catalytic converters. As catalysts accelerate production rates and lower temperature requirements for relevant reactions, they significantly reduce the energy needed to perform a given process and/or produce a product of interest.

The morphology, distribution, size, and chemical composition of nanoparticles are crucial for their catalytic efficiency. Scanning transmission electron microscopy (S/TEM) combined with energy-dispersive X-ray spectroscopy (EDS) has proven to be a valuable research tool for the direct observation and quantification of this information. Additionally, high-performance scanning electron microscopy (SEM) tools take excellent images of beam-sensitive catalyst materials under low-beam-energy and low-beam-current conditions without causing sample damage.

Thermo Fisher Scientific provides a range of instrumentation ideally suited for the characterization of catalyst nanoparticles. We also offer a suite of software tools that allow you to automate your workflow, generating high-resolution, large-area nanoparticle data for a holistic overview of your catalyst.

Platinum nanoparticles and cobalt nanoparticles, used to improve catalytic efficiency, imaged with high resolution EDS
Platinum nanoparticles and cobalt nanoparticles, used to improve catalytic efficiency, imaged with high resolution EDS
Platinum nanoparticles and cobalt nanoparticles, used to improve catalytic efficiency, imaged with high resolution EDS
Platinum nanoparticles and cobalt nanoparticles, used to improve catalytic efficiency, imaged with high resolution EDS
Platinum nanoparticles and cobalt nanoparticles, used to improve catalytic efficiency, imaged with high resolution EDS
Platinum nanoparticles and cobalt nanoparticles, used to improve catalytic efficiency, imaged with high resolution EDS
Platinum nanoparticles and cobalt nanoparticles, used to improve catalytic efficiency, imaged with high resolution EDS
Platinum nanoparticles and cobalt nanoparticles, used to improve catalytic efficiency, imaged with high resolution EDS

High-resolution EDS maps of a beam-sensitive material used for photocatalytic processes (C3N4(Co)-Pt). The catalyst uses the synergistic behavior of platinum and cobalt nanoparticles to improve catalytic efficiency. Data courtesy of Prof. ShengChun Yang, Xi’an Jiaotong University, China.

 Iron oxide quantum dots imaged with bright field TEM, used as catalysts.
Bright field transmission electron microscopy image of iron oxide quantum dots, which are used as a catalyst in variety of chemical processing reactions. Data courtesy of the Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic.
Iron oxide quantum dots imaged with bright field TEM, used as catalysts.
Bright field transmission electron microscopy image of iron oxide quantum dots, which are used as a catalyst in variety of chemical processing reactions. Data courtesy of the Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic.
Automotive catalyst (palladium nanoparticles) imaged with 3D elemental analysis.
3D elemental distribution of a vehicle-aged automotive catalyst sample. Palladium nanoparticles are distributed on oxide carriers.
MOF (metal organic framework), used in catalysis, imaged with SEM.
Metal-organic framework (MOF) with a 2.8 nm pore size. Excellent performance at low beam energy and low beam current enables the Verios SEM to image beam-sensitive materials, like this MOF, at very high resolution, without any sample damage. Image width = ~350 nm. Image by Devin Wu, Thermo Fisher Scientific.
Carbon nanotubes covered with catalyst particles, imaged with SEM.
Carbon nanotubes with catalyst particles on top, imaged at 2 kV using the Verios SEM. Mixed signal from different in-column detectors reveals the topography and elemental contrast of this material. Image width = ~4.2 μm. Image by Devin Wu, Thermo Fisher Scientific.
High-resolution TEM imaging of Pt-Rh catalyst nanoparticles enabled by the Thermo Scientific Ceta 16M Camera, revealing the crystalline lattice structure of nanoparticles. Sample courtesy: Prof. B. Gorman and Prof. R. Richards, Colorado School of Mines.
 Iron oxide quantum dots imaged with bright field TEM, used as catalysts.
Bright field transmission electron microscopy image of iron oxide quantum dots, which are used as a catalyst in variety of chemical processing reactions. Data courtesy of the Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic.
Iron oxide quantum dots imaged with bright field TEM, used as catalysts.
Bright field transmission electron microscopy image of iron oxide quantum dots, which are used as a catalyst in variety of chemical processing reactions. Data courtesy of the Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic.
Automotive catalyst (palladium nanoparticles) imaged with 3D elemental analysis.
3D elemental distribution of a vehicle-aged automotive catalyst sample. Palladium nanoparticles are distributed on oxide carriers.
MOF (metal organic framework), used in catalysis, imaged with SEM.
Metal-organic framework (MOF) with a 2.8 nm pore size. Excellent performance at low beam energy and low beam current enables the Verios SEM to image beam-sensitive materials, like this MOF, at very high resolution, without any sample damage. Image width = ~350 nm. Image by Devin Wu, Thermo Fisher Scientific.
Carbon nanotubes covered with catalyst particles, imaged with SEM.
Carbon nanotubes with catalyst particles on top, imaged at 2 kV using the Verios SEM. Mixed signal from different in-column detectors reveals the topography and elemental contrast of this material. Image width = ~4.2 μm. Image by Devin Wu, Thermo Fisher Scientific.
High-resolution TEM imaging of Pt-Rh catalyst nanoparticles enabled by the Thermo Scientific Ceta 16M Camera, revealing the crystalline lattice structure of nanoparticles. Sample courtesy: Prof. B. Gorman and Prof. R. Richards, Colorado School of Mines.

Applications

Process Control_Thumb_274x180_144DPI

Process Control
 

Modern industry demands high throughput with superior quality, a balance that is maintained through robust process control. SEM and TEM tools with dedicated automation software provide rapid, multi-scale information for process monitoring and improvement.

 

Quality Control_Thumb_274x180_144DPI

Quality Control
 

Quality control and assurance are essential in modern industry. We offer a range of EM and spectroscopy tools for multi-scale and multi-modal analysis of defects, allowing you to make reliable and informed decisions for process control and improvement.

 

Fundamental Materials Research_R&D_Thumb_274x180_144DPI

Fundamental Materials Research

Novel materials are investigated at increasingly smaller scales for maximum control of their physical and chemical properties. Electron microscopy provides researchers with key insight into a wide variety of material characteristics at the micro- to nano-scale.

 

Style Sheet for Techniques (LONG VERSION) and Media Gallery Tab

S/TEM Sample Preparation

DualBeam microscopes enable the preparation of high-quality, ultra-thin samples for S/TEM analysis. Thanks to advanced automation, users with any experience level can obtain expert-level results for a wide range of materials.

Learn more ›

3D Materials Characterization

Development of materials often requires multi-scale 3D characterization. DualBeam instruments enable serial sectioning of large volumes and subsequent SEM imaging at nanometer scale, which can be processed into high-quality 3D reconstructions of the sample.

Learn more ›

EDS Elemental Analysis

EDS provides vital compositional information to electron microscope observations. In particular, our unique Super-X and Dual-X Detector Systems add options for enhanced throughput and/or sensitivity, allowing you to optimize data acquisition to meet your research priorities.

Learn more ›

3D EDS Tomography

Modern materials research is increasingly reliant on nanoscale analysis in three dimensions. 3D characterization, including compositional data for full chemical and structural context, is possible with 3D EM and energy dispersive X-ray spectroscopy.

Learn more ›

Energy Dispersive Spectroscopy

Energy dispersive spectroscopy (EDS) collects detailed elemental information along with electron microscopy images, providing critical compositional context for EM observations. With EDS, chemical composition can be determined from quick, holistic surface scans down to individual atoms.

Learn more ›

Atomic-Scale Elemental Mapping with EDS

Atomic-resolution EDS provides unparalleled chemical context for materials analysis by differentiating the elemental identity of individual atoms. When combined with high-resolution TEM, it is possible to observe the precise organization of atoms in a sample.

Learn more ›

ColorSEM

Using live EDS (energy dispersive X-ray spectroscopy) with live quantification, ColorSEM Technology transforms SEM imaging into a color technique. Any user can now acquire elemental data continuously for more complete information than ever before.

Learn more ›

Imaging using HRSTEM and HRTEM

Transmission electron microscopy is invaluable for characterizing the structure of nanoparticles and nanomaterials. High-resolution STEM and TEM enable atomic-resolution data along with information on chemical composition.

Learn more ›

Differential Phase Contrast Imaging

Modern electronics research relies on nanoscale analysis of electric and magnetic properties. Differential phase contrast STEM (DPC-STEM) can image the strength and distribution of magnetic fields in a sample and display the magnetic domain structure.

Learn more ›

Imaging Hot Samples

Studying materials in real-world conditions often involves working at high temperatures. The behavior of materials as they recrystallize, melt, deform, or react in the presence of heat can be studied in situ with scanning electron microscopy or DualBeam tools.

Learn more ›

Environmental SEM (ESEM)

Environmental SEM allows materials to be imaged in their native state. This is ideally suited for academic and industrial researchers who need to test and analyze samples that are wet, dirty, reactive, outgassing or otherwise not vacuum compatible.

Learn more ›

Electron Energy Loss Spectroscopy

Materials science research benefits from high-resolution EELS for a wide range of analytical applications. This includes high-throughput, high signal-to-noise-ratio elemental mapping, as well as probing of oxidation states and surface phonons.

Learn more ›

Cross-sectioning

Cross sectioning provides extra insight by revealing sub-surface information. DualBeam instruments feature superior focused ion beam columns for high-quality cross sectioning. With automation, unattended high-throughput processing of samples is possible.

Learn more ›

In Situ experimentation

Direct, real-time observation of microstructural changes with electron microscopy is necessary to understand the underlying principles of dynamic processes such as recrystallization, grain growth, and phase transformation during heating, cooling, and wetting.

Learn more ›

Particle analysis

Particle analysis plays a vital role in nanomaterials research and quality control. The nanometer-scale resolution and superior imaging of electron microscopy can be combined with specialized software for rapid characterization of powders and particles.

Learn more ›

SIMS

The TOF-SIMS (time-of-flight secondary ion mass spectrometry) detector for focused ion beam scanning electron microscopy (FIB-SEM) tools enables high-resolution analytical characterization of all elements in the periodic table, even at low concentrations.

Learn more ›

Multi-scale analysis

Novel materials must be analyzed at ever higher resolution while retaining the larger context of the sample. Multi-scale analysis allows for the correlation of various imaging tools and modalities such as X-ray microCT, DualBeam, Laser PFIB, SEM and TEM.

Learn more ›

S/TEM Sample Preparation

DualBeam microscopes enable the preparation of high-quality, ultra-thin samples for S/TEM analysis. Thanks to advanced automation, users with any experience level can obtain expert-level results for a wide range of materials.

Learn more ›

3D Materials Characterization

Development of materials often requires multi-scale 3D characterization. DualBeam instruments enable serial sectioning of large volumes and subsequent SEM imaging at nanometer scale, which can be processed into high-quality 3D reconstructions of the sample.

Learn more ›

EDS Elemental Analysis

EDS provides vital compositional information to electron microscope observations. In particular, our unique Super-X and Dual-X Detector Systems add options for enhanced throughput and/or sensitivity, allowing you to optimize data acquisition to meet your research priorities.

Learn more ›

3D EDS Tomography

Modern materials research is increasingly reliant on nanoscale analysis in three dimensions. 3D characterization, including compositional data for full chemical and structural context, is possible with 3D EM and energy dispersive X-ray spectroscopy.

Learn more ›

Energy Dispersive Spectroscopy

Energy dispersive spectroscopy (EDS) collects detailed elemental information along with electron microscopy images, providing critical compositional context for EM observations. With EDS, chemical composition can be determined from quick, holistic surface scans down to individual atoms.

Learn more ›

Atomic-Scale Elemental Mapping with EDS

Atomic-resolution EDS provides unparalleled chemical context for materials analysis by differentiating the elemental identity of individual atoms. When combined with high-resolution TEM, it is possible to observe the precise organization of atoms in a sample.

Learn more ›

ColorSEM

Using live EDS (energy dispersive X-ray spectroscopy) with live quantification, ColorSEM Technology transforms SEM imaging into a color technique. Any user can now acquire elemental data continuously for more complete information than ever before.

Learn more ›

Imaging using HRSTEM and HRTEM

Transmission electron microscopy is invaluable for characterizing the structure of nanoparticles and nanomaterials. High-resolution STEM and TEM enable atomic-resolution data along with information on chemical composition.

Learn more ›

Differential Phase Contrast Imaging

Modern electronics research relies on nanoscale analysis of electric and magnetic properties. Differential phase contrast STEM (DPC-STEM) can image the strength and distribution of magnetic fields in a sample and display the magnetic domain structure.

Learn more ›

Imaging Hot Samples

Studying materials in real-world conditions often involves working at high temperatures. The behavior of materials as they recrystallize, melt, deform, or react in the presence of heat can be studied in situ with scanning electron microscopy or DualBeam tools.

Learn more ›

Environmental SEM (ESEM)

Environmental SEM allows materials to be imaged in their native state. This is ideally suited for academic and industrial researchers who need to test and analyze samples that are wet, dirty, reactive, outgassing or otherwise not vacuum compatible.

Learn more ›

Electron Energy Loss Spectroscopy

Materials science research benefits from high-resolution EELS for a wide range of analytical applications. This includes high-throughput, high signal-to-noise-ratio elemental mapping, as well as probing of oxidation states and surface phonons.

Learn more ›

Cross-sectioning

Cross sectioning provides extra insight by revealing sub-surface information. DualBeam instruments feature superior focused ion beam columns for high-quality cross sectioning. With automation, unattended high-throughput processing of samples is possible.

Learn more ›

In Situ experimentation

Direct, real-time observation of microstructural changes with electron microscopy is necessary to understand the underlying principles of dynamic processes such as recrystallization, grain growth, and phase transformation during heating, cooling, and wetting.

Learn more ›

Particle analysis

Particle analysis plays a vital role in nanomaterials research and quality control. The nanometer-scale resolution and superior imaging of electron microscopy can be combined with specialized software for rapid characterization of powders and particles.

Learn more ›

SIMS

The TOF-SIMS (time-of-flight secondary ion mass spectrometry) detector for focused ion beam scanning electron microscopy (FIB-SEM) tools enables high-resolution analytical characterization of all elements in the periodic table, even at low concentrations.

Learn more ›

Multi-scale analysis

Novel materials must be analyzed at ever higher resolution while retaining the larger context of the sample. Multi-scale analysis allows for the correlation of various imaging tools and modalities such as X-ray microCT, DualBeam, Laser PFIB, SEM and TEM.

Learn more ›

Products

Style Sheet for Instrument Cards Original

Spectra 300

  • Highest-resolution structural and chemical information at the atomic level
  • Flexible high-tension range from 30-300 kV
  • Three lens condenser system

Spectra 200

  • High-resolution and contrast imaging for accelerating voltages from 30-200 kV
  • Symmetric S-TWIN/X-TWIN objective lens with wide-gap pole piece design of 5.4 mm
  • Sub-Angstrom STEM imaging resolution from 60 kV-200 kV

Themis ETEM

  • Precise control and knowledge of sample temperature
  • Improved sample stability, navigation, and assisted sample drift correction in x, y, and z axes
  • Advancing high-quality imaging and movie acquisition functions

Talos L120C

  • Increased stability
  • Multiple auto-functions
  • Quick sample exchange with robust vacuum system
  • High-quality cryo-imaging

Talos F200C TEM

  • Flexible EDS analysis reveals chemical information
  • High-contrast, high-quality TEM and STEM imaging
  • Ceta 16 Mpixel CMOS camera provides large field of view and high read-out speed

Talos F200i TEM

  • High-quality S/TEM images and accurate EDS
  • Available with dual EDS technology
  • Best all-round in situ capabilities
  • Large field-of-view imaging at high speed

Talos F200S TEM

  • Precise chemical composition data
  • High performance imaging and precise compositional analysis for dynamic microscopy
  • Features Velox Software for fast and easy acquisition and analysis of multimodal data

Talos F200X TEM

  • High resolution and throughput in STEM imaging and chemical analysis
  • Add application-specific in situ sample holders for dynamic experiments
  • Features Velox Software for fast and easy acquisition and analysis of multimodal data

Helios Hydra DualBeam

  • 4 fast switchable ion species (Xe, Ar, O, N) for optimized PFIB processing of a widest range of materials
  • Ga-free TEM sample preparation
  • Extreme high resolution SEM imaging

Helios G4 PFIB DualBeam

  • High throughput large volume subsurface and 3D characterization
  • High-quality Ga+ free TEM samples
  • Extreme high resolution SEM imaging
  • Advanced ease of use and automation capabilities

Helios 5 DualBeam

  • Fully automated, high-quality, ultra-thin TEM sample preparation
  • High throughput, high resolution subsurface and 3D characterization
  • Rapid nanoprototyping capabilities

Scios 2 DualBeam

  • Full support of magnetic and non-conductive samples
  • High throughput subsurface and 3D characterization
  • Advanced ease of use and automation capabilities

Verios XHR SEM

  • Monochromated SEM for sub-nanometer resolution over the full 1 keV to 30 keV energy range
  • Easy access to beam landing energies as low as 20 eV
  • Excellent stability with piezo stage as standard

Quattro ESEM

  • Ultra-versatile high-resolution FEG SEM with unique environmental capability (ESEM)
  • Observe all information from all samples with simultaneous SE and BSE imaging in every mode of operation

Apreo SEM

  • High-performance SEM for all-round nanometer or sub-nanometer resolution
  • In-column T1 backscatter detector for sensitive, TV-rate materials contrast
  • Excellent performance at long working distance (10 mm)

Prisma E SEM

  • Entry-level SEM with excellent image quality
  • Easy and quick sample loading and navigation for multiple samples
  • Compatible with a wide range of materials thanks to dedicated vacuum modes

VolumeScope 2 SEM

  • Isotropic 3D data from large volumes
  • High contrast and resolution in high and low vacuum modes
  • Simple switch between normal SEM use and serial block-face imaging

Phenom ProX Desktop SEM

  • High performance desktop SEM with integrated EDS detector
  • Resolution <8 nm (SE) and <10 nm (BSE); magnification up to 150,000x
  • Optional SE detector
 
 

Phenom XL G2 Desktop SEM

  • For large samples (100x100 mm) and ideal for automation
  • <10 nm resolution and up to 200,000x magnification; 4.8 kV up to 20 kV acceleration voltage
  • Optional fully integrated EDS and BSE detector

Phenom Pharos Desktop SEM

  • FEG source with 2 up to 15 kV acceleration voltage range
  • <2.5 nm (SE) and <4.0 nm (BSE) resolution @ 15 kV; up to 1,000,000x magnification
  • Optional fully integrated EDS and SE detector

Phenom Pro Desktop SEM

  • High performance desktop SEM
  • Resolution <8 nm (SE) and <10 nm (BSE); magnification up to 150,000x
  • Optional SE detector

Phenom Pure SEM

  • Imaging module
  • 19” monitor
  • Diaphragm vacuum pump

Nexsa XPS

  • Tilt Module for ARXPS measurements
  • Dual-mode ion source for expanded depth profiling capabilities
  • Insulator analysis

K-Alpha XPS

  • Selectable area spectroscopy
  • Micro-focused monochromator
  • High-resolution chemical state spectroscopy

ESCALAB Xi+ XPS

  • High sensitivity spectroscopy
  • XPS with non-monochromatic X-rays
  • 180° hemispherical energy analyzer

HeliScan microCT

  • Advanced helical scanning and iterative reconstruction technology
  • High resolution x-ray source (below 400 nm)
  • Process, analyze, and visualize samples

Auto Slice and View 4.0 Software

  • Serial sectioning for 3D STEM images
  • Imaging plus analytical data (EDS, EBSD)
  • On-the-fly editing capabilities
  • New algorithms – easier to use

Avizo Software

  • Support for multi-data/multi-view, multi-channel, time series, very large data
  • Advanced multi-mode 2D/3D automatic registration
  • Artifact reduction algorithms

Inspect 3D Software

  • Image processing tools and filters for cross-correlation
  • Feature tracking for image alignment
  • Algebraic reconstruction technique for iterative projection comparison

Maps Software

  • Acquire high resolution images over large areas
  • Easily find regions of interest
  • Automate image acquisition process
  • Correlate data from different sources

PoroMetric

  • Correlate pore features such as area, aspect ratio, major and minor axis
  • Acquire images directly from the Desktop SEM
  • Statistical data with high-quality images

ParticleMetric

  • Integrated software in ProSuite for online and offline analysis
  • Correlating particle features such as diameter, circularity, aspect ratio and convexity
  • Creating image datasets with Automated Image Mapping

Elemental Mapping

  • Fast and reliable information on the distribution of elements within the sample or the selected line
  • Easily exported and reported results

3D Reconstruction

  • Intuitive user interface, maximum employability
  • Intuitive fully automated user interface
  • Based on 'shape from shading' technology, no stage tilt required

FiberMetric

  • Save time by automated measurements
  • Fast and automated collection of all statistical data
  • View and measure micro and nano fibers with unmatched accuracy

μHeater

  • Ultra-fast heating solution for in situ high resolution imaging
  • Fully integrated
  • Temperatures up to 1200 °C

Standard Sample Holder

  • Compact stage allowing analysis of samples of up to 100 mm x 100 mm
  • Can be extended with 3 types of resin or metallurgical mount inserts
  • Used with Phenom Desktop SEM

Eucentric Sample Holder

  • Eucentric tilting and compucentric rotation on a desktop SEM
  • Fast time-to-image with sample loading < 1 minute
  • Real-time 3D sample visualization module

Tensile Sample Holder

  • Determine batch quality
  • Determine manufacturing consistencys
  • Aid the design process

Resin Mount Inserts

  • A unique sample holder concept
  • Available in 3 models for supporting standard sized samples of 25 mm (~1 inch), 32 mm (~1 ¼ inch) and 40 mm (~1 ½ inch) diameter

Contact us

Style Sheet for Support and Service footer
Style Sheet for Fonts
Style Sheet for Cards

Electron microscopy services for
the materials science

To ensure optimal system performance, we provide you access to a world-class network of field service experts, technical support, and certified spare parts.

Learn more ›