Type:
Whole Allergen
Whole Allergen
Whole Allergen
Foxtail millet
f56
Poaceae (Gramineae)
Setaria italica
Foxtail millet, Italian millet, German millet, Hungarian millet, Siberian millet
XM3XH8
(ICD-11 is currently under implementation by WHO and the ICD-11 codes displayed in the encyclopedia may not yet be available in all countries)
The name Millet is used to describe seeds from several taxonomically divergent species of grass. They are grown mostly in marginal areas and under agricultural conditions in which major cereals fail to give sustainable yields (1).
Foxtail millet and the other Millets are not closely related to Wheat.
Foxtail millet is used mainly in animal fodder and for bird seed. The main production area is China, but this is the most important Millet in Japan and is widely cultivated in India. Because of its fast maturation, it is a suitable crop for growing by nomads. The height of the plants varies from 1 to 1.5 m, and the colour of the grain varies from pale yellow through orange, red, brown and black (1)
The Millets are important sources of food for humans and animals. But in the West, with the exception of natural food stores, Millet is sold mainly as bird feed.
No allergens from this plant have yet been characterised.
A number of proteins have been isolated and described as occurring in Foxtail millet. The allergenic potential of these proteins was, however, not evaluated.
Barnyard millet, Common millet, Little millet, Foxtail millet and Kodo millet were studied. The protein contents of the selected decorticated Millets were found to be 11.0, 12.3, 12.9, 10.5 and 10.6%, respectively. Prolamin is a major storage protein in Foxtail millet, whereas glutelin is a major storage protein in all the other Millets. A protein band at the molecular weight range of 20 kDa was found to be homologous in all except Proso millet (2).
A Foxtail millet glutelin of 60 kDa (MG60) has been isolated. The primary structure at the N-terminal end was almost identical to those of the granule-bound starch synthase (GBSS) proteins from Rice, Barley, Maize, Wheat and Potato. Common epitopes from these starch-storing cereals were corroborated by immunoblot analysis, strongly suggesting a close relationship (3).
In a study, the antigenic relationships among "minor Millets" (Barnyard, Little and Foxtail millets) and other cereals (Wheat, Maize, Rice, Sorghum, Finger millet and Pearl millet) were evaluated using an antibody raised against a 20 kDa prolamin from Kodo millet. It was demonstrated that the prolamin was related to the prolamins from the other plants. Rice was the only common cereal that did not cross-react immunologically with the 20 kDa prolamin of Kodo millet (4).
A subtilisin inhibitor has been isolated from seeds of Foxtail millet (5).
Proteinase inhibitors (trypsin/chymo-trypsin) have been demonstrated to be present in Finger millet, Sorghum, Pearl millet, Foxtail millet, and Japanese millet (6). The amino acid sequence of an isolated trypsin inhibitor (7) had a high degree of homology to Bowman-Birk type inhibitors from leguminous and gramineous plants (8).
Cross-allergenicity among Rice, Wheat, Maize, Japanese and Foxtail millet was examined by IgE antibody determination and RAST inhibition studies, demonstrating significant close correlations among the 5 cereal grain extracts. A Rice protein of16 KDa was shown to be one of major allergens in Rice grain extracts (9-10). The protein showed sequence homology to Wheat alpha-amylase inhibitor and Barley trypsin inhibitor (11). The clinical relevance of this protein was not assessed.
A Rice protein of 16 kDa has been shown to be involved in cross-allergenicity among antigens in Rice, Wheat, Maize, Japanese millet and Foxtail millet (10). The clinical relevance of this allergen was not examined.
In a study, the antigenic relationships among "minor Millets" (Barnyard, Little and Foxtail millets) and other cereals (Wheat, Maize, Rice, Sorghum, Finger millet and Pearl millet) were evaluated using an antibody raised against a 20 kDa prolamin from Kodo millet. It was demonstrated that the prolamin was related to the prolamins from the other plants. Rice was the only common cereal that did not cross-react immunologically with the 20 kDa prolamin of Kodo millet (4). The clinical significance of this was not evaluated.
IgE-mediated reactions
Hypersensitivity to cereals may occur via inhalation or ingestion, but reported allergy to Foxtail millet is rare.
With the increasing popularity of "natural foods", Millet is more frequently included in various dishes, which might raise the incidence of Millet-related allergic reactions. Patients with adverse reaction to Gluten may substitute Millet for gluten-containing cereals.
Little information is available on the allergens causing symptoms in patients with atopic dermatitis. One study analysed the IgE immune response to various cereals and to specific protein fractions of Wheat and Oats in children with severe atopic dermatitis (AD) and correlated the results with challenge studies. In SPT studies, 33 children were positive for Wheat and 18 for Oats. SPT for Rice, Maize, Millet or Buckwheat were positive in 16 of the 34 patients (12).
IgE antibodies against Foxtail millet were found in serum of patients with atopic dermatitis with or without bronchial asthma (9).
Other reactions
Crude extracts of Millet may contain aflatoxins (13). Millet diets rich in C-glycosylflavones are goitrogenic (14).
Last reviewed: June 2022.