Nicolet™ iS™ 50 FT-IR 分光光度計
Nicolet™ iS™ 50 FT-IR 分光光度計
Nicolet™ iS™ 50 FT-IR 分光光度計
Nicolet™ iS™ 50 FT-IR 分光光度計
Nicolet™ iS™ 50 FT-IR 分光光度計
Nicolet™ iS™ 50 FT-IR 分光光度計
Thermo Scientific™

Nicolet™ iS™ 50 FT-IR 分光光度計

専用アクセサリと内蔵ソフトウェアが搭載された Thermo Scientific™ Nicolet™ iS™50 は、分析における課題を簡単に解決する一体型の分析ワークステーションです。

製品番号(カタログ番号)性能検証スペクトル領域
912A0760ASTM E1421 に準拠し ISO/GLP 要求事項に対応15 ~ 27,000 cm¹
製品番号(カタログ番号) 912A0760
価格(JPY)
-
見積もりを依頼する
性能検証:
ASTM E1421 に準拠し ISO/GLP 要求事項に対応
スペクトル領域:
15 ~ 27,000 cm¹

専用アクセサリと内蔵ソフトウェアが搭載された Thermo Scientific™ Nicolet™ iS™50 FT-IR は、分析における課題を簡単に解決する一体型の分析ワークステーションです。

高い拡張性を有する Nicolet iS50 FT-IR 分光光度計は、シンプルな FT-IR ベンチから、遠赤外から可視領域までのスペクトルを取得できる全自動マルチスペクトルレンジシステムにアップグレードできます。新しい ATR、ラマンおよび NIR モジュールは、手動で光学系を変更することなく、ボタン1つで起動することができます。

Nicolet iS50 FT-IR 分光光度計は、分析ラボで高速かつシンプルなワークフローが必要な場合に最適です。

Nicolet iS50 FT-IR の機能:

  • 2つの光源を搭載可能
  • Polaris™ 長寿命赤外光源
  • Tungsten-Halogen 白色光源
  • メインの試料室に 3 台の検出器を搭載
  • 高分解能
  • バリデーションホイール標準搭載
  • 金コート光学系(アルミニウム光学系オプション)
  • 既存のアクセサリをフルサポート
  • 高分解能用エネルギースクリーンを標準搭載
  • パージシャッター (オプション)
  • 電動フィルター (オプション)
  • 電動偏光子 (オプション)
  • 平行光、集束光、どちらも出力可能なエミッションポート

スマートアクセサリをはじめとする以下のオプションモジュールをお使いいただけます。

  • ビルトイン ATR (中遠赤外ダイヤモンド ATR)
  • 自動ビームスプリッタチェンジャ (ABX)
  • 試料室搭載型ラマンアクセサリ
  • NIR モジュール (積分球、ファイバー光学系付き)
  • TGA-IR アクセサリ
  • GC-IR モジュール

詳細は、技術ライブラリの仕様書およびパンフレットをご覧ください。

  • 設置面積 (ベースのみ): 25 × 27 × 11 インチ (62.6 × 69.8 × 27.6 cm)
  • 重量 (ベースのみ): 132 ポンド (60 kg)
  • 設置面積 (ABXを含む): 25 × 27 × 20 インチ(62.6 × 69.8 × 50.8 cm)
  • 重量 (ベースのみ): ABX を含めた場合: 141 ポンド (64 kg)
  • ラマンおよび専用 ATR モジュール搭載時も設置面積は変わりません
  • NIR モジュール搭載時には設置面積が 11 インチ (27.9cm) 必要です。

推奨用途:

  • ポリマー、ゴム
  • 法医学
  • 医薬品
  • 顔料、塗料、インク
  • 食品、香味料、オイル
  • 一般的なラボ
仕様
光線スプリッター自動ビームスプリッタチェンジャ (ABX)
コンポーネント光源、検出器、ビームスプリッタ
奥行き(ヤードポンド法)27 in.
奥行き(メートル法)69.8 cm
概要専用アクセサリと内蔵ソフトウェアが搭載された Nicolet iS50 は、分析における課題を簡単に解決する一体型の分析ワークステーションです。
検出器タイプ最大 9 台の検出器を搭載可能
電気的要件100-240V 50/60 Hz
使用対象(アプリケーション)ポリマー/ゴム、法医学、医薬品
使用対象 (装置)スマートアクセサリ、TGA-IR、Continuum 赤外顕微鏡、PAS(光音響)、標準アクセサリ、ガスセル、GC-IR、FT ラマン、ABX、近赤外、ビルドイン ATR
高さ(ヤードポンド法)11 in.
高さ(メートル法)27.6 cm
湿度耐湿性に優れた密閉型
インターフェースPC USB 2.0
レーザーHeNe
製品タイプNicolet iS50 FT-IR 分光光度計とソフトウェア
光源タイプ2つの光源を搭載可能: Polaris™ 長寿命赤外光源
スペクトル領域15 ~ 27,000 cm¹
スペクトル分解能0.09 cm¹ 以下
重量 (ヤードポンド法)132 lb.
重量(メートル法)60 kg
幅(ヤードポンド法)25 in.
幅(メートル法)62.6 cm
性能検証ASTM E1421 に準拠し ISO/GLP 要求事項に対応
電圧100/240 V
Unit SizeEach

よくあるご質問(FAQ)

What is Raman spectroscopy?

In Raman spectroscopy, an unknown sample of material is illuminated with monochromatic (single wavelength or single frequency) laser light, which can be absorbed, transmitted, reflected, or scattered by the sample. Light scattered from the sample is due to either elastic collisions of the light with the sample's molecules (Rayleigh scatter) or inelastic collisions (Raman scatter). Whereas Rayleigh scattered light has the same frequency (wavelength) of the incident laser light, Raman scattered light returns from the sample at different frequencies corresponding to the vibrational frequencies of the bonds of the molecules in the sample.

If you wish to learn more about Raman spectroscopy, visit our online Raman Spectroscopy Academy (https://www.thermofisher.com/us/en/home/industrial/spectroscopy-elemental-isotope-analysis/spectroscopy-elemental-isotope-analysis-learning-center/molecular-spectroscopy-information/raman-technology.html), where you will find basic Raman tutorials, advanced Raman webinars on sample applications, and a helpful instrument guide.

Using the Beer-Lambert law in FTIR ATR for quantitative analysis of a time-sensitive, migrating substance (e.g., erucamide) in a polymer is difficult. How can this be overcome?

The Beer-Lambert law is based on stable samples and reproducible conditions. In ATR, you have two concerns. First, the sample must make contact with the crystal in a consistent manner. If the material is rough or crystalline, you must ensure reproducibility. Grinding the material to a fine powder may be necessary. Second, ATR is a surface technique, examining the sample to a depth of around 1-4 microns. If the additive or target molecule is migrating further away, you will lose the signal. In this case, transmission, which illuminates the entire sample and entire thickness, may be a viable option (depending upon thickness). In some cases, the application of pressure can change the signal due to changes in the crystallinity or orientation of polymer strands in the sample. Any deeper insights would require an understanding of the specific sample involved.

What types of sampling cells and detectors are used for protein analysis using Fourier Transform Infrared Spectroscopy (FTIR)?

One key experimental step in protein analysis is the removal of the water bands (most proteins are in buffers). This requires highly controlled path-length transmission cells or ATR. Most historical work was done in 6-10 micron path length transmission cells using BaF2 or similar windows. The analytical region is roughly between 1400 and 1750cm-1 where these windows are transmissive. Recently, ATR devices using silicon, germanium, or diamond windows have become more prevalent. Reactions or binding of proteins to the crystal can occur with ZnSe devices (due to surface charges); sometimes this is desired but often it is not. Most of the literature is based on transmission cells. Protein analysis requires skill and consistency, so training is essential for most laboratories.

What is the advantage of DRIFTS compared to ATR technique in Fourier Transform Infrared Spectroscopy (FTIR)? What is the difference?

DRIFTS is used in both mid-IR and near-IR. In the mid-IR, DRIFTS requires the sample be blended with diluents like KBr, with 3-10% sample. This is typically undesirable as the sample is now mixed. However, DRIFTS is heavily used in catalysis research where powdered material is exposed to high temperature, elevated pressures, and mixtures of reactant gases. Several accessory suppliers make devices specific for this. In the near-IR, DRIFTS is used without dilution through direct measurement - many hand-held probes exist allowing analysis through a container wall (like plastic bags) meaning the sample can be analyzed without touching or contaminating it.

ATR involves making contact with the sample by forcing it into contact with a crystal. ATR generally does not require dilution and works well with solids like credit cards or car bumpers which would be tough in DRIFTS. ATR has, for the most part, displaced DRIFTS in the mid-IR except in special cases, while DRIFTS remains a method of choice in the near-IR world.

What are some subtleties and scenarios in inorganic applications for Fourier Transform Infrared Spectroscopy (FTIR)?

Fourier Transform Infrared Spectroscopy (FTIR) responds to a change in dipole moment, regardless of whether it is organic or inorganic. Metal oxides, carbonates, and carbonyls are good examples. The basic equation states that the wavenumber is proportional to the square root of the spring constant (bond strength) and one over the square root of the reduced mass. Simply put, as mass of the atoms involved in the bond goes up, the wavenumber goes down. Many inorganics have peaks below 400cm-1, such as ferrocene, acetylferrocene and cadmium oxide. This necessitates the use of “far-IR” optics. Many forensics users have found far-IR useful in identifying paint chips, due to their inorganic content. There are several ATR accessories that now permit far-IR ATR (mostly monolithic diamond devices). The Thermo Scientific Nicolet iS50 FTIR Spectrometer was designed to make far-IR performance trivial with a built-in ATR as well. Ultimately, if you have further interest in this area, you need to speak with an FTIR sales person to understand the capabilities and limitations.