Dynabeads™ FlowComp™ Human CD14 Kit
Dynabeads™ FlowComp™ Human CD14 Kit
Invitrogen™

Dynabeads™ FlowComp™ Human CD14 Kit

Dynabeads™ FlowComp™ヒトCD14には磁気ビーズが含まれており、全血、骨髄、バフィーコート、単核細胞(MNC)、または組織消化物から純粋なCD14+単球をポジティブに単離するための堅牢で汎用性の高いツールを提供します。細胞は詳細を見る
製品番号(カタログ番号)数量
11367D2 x 3 mL
製品番号(カタログ番号) 11367D
価格(JPY)
-
見積もりを依頼する
数量:
2 x 3 mL
Dynabeads™ FlowComp™ヒトCD14には磁気ビーズが含まれており、全血、骨髄、バフィーコート、単核細胞(MNC)、または組織消化物から純粋なCD14+単球をポジティブに単離するための堅牢で汎用性の高いツールを提供します。細胞は、FlowComp™リリースバッファーを使用してビーズから放出できます。
•あらゆるサンプルからCD14+単球を迅速に単離 – カラム不要
• あらゆる下流アプリケーションに対応する純粋なビーズフリーCD14+単球

回収細胞の優れた収量、純度、生存率
Dynabeads™ FlowComp™ヒトCD14には、均一な超常磁性ビーズ(直径 2.8 µm)が含まれており、3ステップのプロセスで任意のサンプルからヒトCD14+単球を直接単離できます。最初に、FlowComp™ヒトCD14抗体をチューブ内のサンプルと混合します。すると、短いインキュベーションで抗体がCD14+単球に結合します。次に、特定の抗体と結合したCD14+単球を FlowComp™ Dynabeads™で捕捉し、マグネットを使用して非結合細胞から分離します。最後に、FlowComp™放出緩衝液を追加して、CD14+単球をビーズから解放します。この迅速で穏やかな単離法では、カラムを使用する必要がなく、単離されたCD14+単球の高い純度と生存率が確保されます。

当社の幅広いヒト単球細胞単離製品から、お客様に最適な製品をお選びください。

研究用途にのみご使用ください。動物やヒトの診断や治療には使用できません。
研究用途にのみご使用ください。診断目的には使用できません。
仕様
細胞タイプ単球
クローン性モノクローナル
最終産物タイプ細胞
フォーマット溶液中のビーズ
高スループット適合性ハイスループット非対応(手動)
単離技術ポジティブ単離 - 細胞は単離後もビーズフリーのまま
リガンドタイプ抗体
セル数2 x 10^9 PBMC、80 mL全血、または160 mLのバフィーコート
テスト数40単離
製品ラインFlowComp
純度または品質グレード研究グレード、99%
数量2 x 3 mL
サンプルタイプPBMC、バフィーコート、血液
出荷条件室温
ターゲット種ヒト
直径(メートル法)2.8 μm
製品タイプ細胞キット
Unit SizeEach
組成および保存条件
このキットには、2 x 3 mLのFlowComp™ Dynabeads™、1 mLの FlowComp™ヒトCD14抗体、および2 x 20 mLのFlowComp™放出緩衝液が含まれています。
保存温度:2~8℃

よくあるご質問(FAQ)

My Dynabeads magnetic beads are not pelleting well with the magnet. Do you have any suggestions for me?

Please review the following possibilities for why your Dynabeads magnetic beads are not pelleting:

- The solution is too viscous.
- The beads have formed aggregates because of protein-protein interaction.

Try these suggestions: - Increase separation time (leave tub on magnet for 2-5 minutes)
- Add DNase I to the lysate (~0.01 mg/mL)
- Increase the Tween 20 concentration to ~0.05% of the binding and/or washing buffer.
- Add up to 20 mM beta-merecaptoethanol to the binding and/or wash buffers.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

I have a long double-stranded DNA fragment I would like to isolate. What product do you recommend?

For biotin-labeled DNA that is less than 1 kb, we recommend you use Dynabeads M270 Streptavidin (Cat. No. 65305) and MyOne C1 magnetic beads (Cat. No. 65001). We recommend our Dynabeads KilobaseBINDER Kit (Cat. No. 60101), which is designed to immobilize long (>1 kb) double-stranded DNA molecules. The KilobaseBINDER reagent consists of M-280 Streptavidin-coupled Dynabeads magnetic beads along with a patented immobilization activator in the binding solution to bind to long, biotinylated DNA molecules for isolation. Please see the following link (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/napamisc/capture-of-biotinylated-targets/immobilisation-of-long-biotinylated-dna-fragments.html) for more information in regards to long biotinylated DNA fragment isolation.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

Can I use Dynabeads magnetic beads to isolate single-stranded DNA templates?

Yes, Dynabeads magnetic beads can be used to isolate single-stranded DNA. Streptavidin Dynabeads magnetic beads can be used to target biotinylated DNA fragments, followed by denaturation of the double-stranded DNA and removal of the non-biotinylated strand. The streptavidin-coupled Dynabeads magnetic beads will not inhibit any enzymatic activity. This enables further handling and manipulation of the bead-bound DNA directly on the solid phase. Please see the following link (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/napamisc/capture-of-biotinylated-targets/preparing-single-stranded-dna-templates.html) for more information in regards to single-stranded DNA capture.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

What is the magnetic susceptibility for Dynabeads magnetic beads?

Magnetic susceptibility is a measure of how quickly the beads will migrate to the magnet. This will depend on the iron content and the character of the iron oxide. The magnetic susceptibility given for the Dynabeads magnetic beads is the mass susceptibility, given either as cgs units/g or m^3/kg (the latter being an SI unit). For ferri- and ferromagnetic substances, the magnetic mass susceptibility is dependent upon the magnetic field strength (H), as the magnetization of such substances is not a linear function of H but approaches a saturation value with increasing field. For that reason, the magnetic mass susceptibility of the Dynabeads magnetic beads is determined by a standardized procedure under fixed conditions. The magnetic mass susceptibility given in our catalog is thus the SI unit. Conversion from Gaussian (cgs, emu) units into SI units for magnetic mass susceptibility is achieved by multiplying the Gaussian factor (emu/g or cgs/g) by 4 pi x 10^-3. The resulting unit is also called the rationalized magnetic mass susceptibility, which should be distinguished from the (SI) dimensionless magnetic susceptibility unit. In general, magnetic mass susceptibility is a measure of the force (Fz) influencing an object positioned in a nonhomogenous magnetic field. The magnetic mass susceptibility of the Dynabeads magnetic beads is measured by weighing a sample, and then subjecting the sample to a magnetic field of known strength. The weight (F1) is then measured, and compared to the weight of the sample when the magnetic field is turned off (F0). The susceptibility is then calculated as K x 10^-3 = [(F1-F0) x m x 0.335 x 10^6], where K is the mass susceptibility of the sample of mass m. The susceptibility is then converted to SI units.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

How can I determine coupling efficiency of Dynabeads magnetic beads?

There are different methods to check binding of ligands to the beads, including optical density (OD) measurement, fluorescent labeling, and radioactive labeling.

For OD measurement, you would measure the OD of the ligand before immobilization to the beads and compare it with the ligand concentration that is left in the supernatant after coating. This gives a crude measurement of how much protein has bound to the beads.

Protocol:

1.Set spectrophotometer to the right wavelength. As a blank, use the Coupling Buffer.
2.Measure the absorbance of the Pre-Coupling Solution. A further dilution may be necessary to read the absorbance, depending upon the amount of ligand added.
3.Measure the absorbance of the Post-Coupling Solution. A dilution may be necessary to read the absorbance.
4.Calculate the coupling efficiency, expressed as the % protein uptake, as follows. [(Pre-Coupling Solution x D) - (Post-Coupling Solution x D)] x 100/(Pre-Coupling Solution x D) where D = dilution factor.

For fluorescent labeling, we suggest negatively quantifying the amount of ligand bound by measuring ligand remaining in the coupling supernatant (compared to the original sample), rather than directly measuring the ligands on the beads. Add labeled ligand to the beads, and measure how much ligand is left in the supernatant (not bound to the beads). By comparing this with the total amount added in the first place, you can then calculate how much of the ligand that has been bound to the beads. Keep in mind that the Dynabeads magnetic beads are also autofluorescent, which is why direct measuring of fluorescence of the bead-bound ligands is not recommended, but rather this indirect approach. The label could be, for example, FITC/PE. Some researchers perform a direct approach with success (using a flow cytometer).

Radioactive labeling is the most sensitive method of the three, but it is also the most difficult one. It involves radioactively labeling a portion of the ligand. We use radiolabeled I-125 in tracer amounts and mix it with "cold" ligands in a known ratio before coupling. The absolute quantities for the ligand on the beads should be obtained by measuring the beads in a scintillation (gamma) counter and comparing the cpm with a standard.

Protocol:

1.Take out an appropriate amount of beads and wash the beads in 1 mL of binding buffer.
2.Pipette out desired amount of human IgG in a separate tube.
3.Mix the human IgG with I-125-labeled human IgG (30,000 - 100,000 cpm).
4.Dilute the mixture of human IgG and I-125-labeled human IgG to 100 mL in binding buffer.
5.Incubate for 30 minutes at room temperature and measure the cpm in a scintillation counter.
6.Wash the beads (with coating) four times, and measure cpm again.
The % binding is calculated by using the equation : (cpm after washing/cpm before washing)x100%.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.