SuperScript™ III One-Step RT-PCR System with Platinum™ Taq DNA Polymerase
SuperScript&trade; III One-Step RT-PCR System with Platinum&trade; <i>Taq</i> DNA Polymerase
Invitrogen™

SuperScript™ III One-Step RT-PCR System with Platinum™ Taq DNA Polymerase

SuperScript™ III One-Step RT-PCR System with Platinum™ Taq DNAポリメラーゼは、RT-PCRによるRNA詳細を見る
製品番号(カタログ番号)反応数
1257401825反応
12574026反応100回分
製品番号(カタログ番号) 12574018
価格(JPY)
52,800
Each
お問い合わせください ›
反応数:
25反応
一括またはカスタム形式をリクエストする
SuperScript™ III One-Step RT-PCR System with Platinum™ Taq DNAポリメラーゼは、RT-PCRによるRNA 分子のエンドポイント検出および分析において高感度、高い再現性が得られるように設計されています。この便利なワンステップフォーマットは、遺伝子特異的プライマーおよび、ターゲットRNAが含まれた全RNAまたはメッセンジャーRNAを使用し、単一チューブ内でcDNA合成とPCR増幅の両方を行えます。このシステムでは最適化された反応バッファー内にSuperScript™ III逆転写酵素とPlatinum™ Taq DNAポリメラーゼが混合されており、200 bp~4.5 kbの幅広い範囲のRNAターゲットを検出できます。出発材料の量は、トータルRNAの場合、0.01 pg~1 µgまでの範囲です。このキットの主な利点:

高感度—トータルRNA最少0.01 pgまで検出可能(図参照)
便利—反応間のばらつきが少なく、スピード、利便性に優れたワンステップフォーマット
特異性—最高55°℃までのcDNA合成に対応可能なSuperScript™ III RTを用いることで、より特異的なプライミングが可能(図参照)
アンプリコンサイズ—最大 4.5 kb までのターゲット検出も両立する、優れた柔軟性

SuperScript™ III逆転写
SuperScript™ III逆転写は、M-MLV RTのバージョンの一つで、RNase H活性を低下させて高い熱安定性を持つように設計されています。この酵素は 45~60℃の温度範囲でcDNA合成を行えるため、他の酵素よりも高い特異性やcDNAの収量が得られ、完全長産物の量も他の逆転写酵素より多くなります。SuperScript™ III RTはリボソームRNAや転移RNAによって大きく阻害されないため、トータルRNAからcDNAを合成する際に使用できます。

Platinum™ Taq DNAポリメラーゼ
Platinum™ Taq DNA ポリメラーゼは、室温でポリメラーゼ活性を阻害する独自の抗体と複合化する組み換え型Taq DNAポリメラーゼです。PCRサイクル中の94℃での変性ステップ後に活性が回復する自動「ホットスタート」により、感度、特異性、収量を向上させます。
研究用にのみ使用できます。診断用には使用いただけません。
仕様
最終産物タイプPCR Amplified cDNA
フォーマットキット
ホットスタート内蔵ホットスタート
反応数25反応
最適反応温度50°C
ポリメラーゼPlatinum Taq
数量25反応
反応形態マスターミックス
試薬タイプ逆転写反応試薬
逆転写酵素SuperScript™ III
リボヌクレアーゼH活性低減
出荷条件ドライアイス
サイズ(最終製品)4.5 kb以下
原料RNA
技術1-Step RT-PCR
検出法ゲル電気泳動
GC-Rich PCR Performance
PCR法1ステップRT-PCR
反応速度スタンダード
Unit SizeEach
組成および保存条件
コンポーネント:
• SuperScript™ III RT/Platinum™ Taqミックス、50 µL
• 2X反応ミックス(各0.4 mM dNTP、3.2 mM MgSO4を含む)、1 mL
• 5 mM硫酸マグネシウム、500 µL

すべての構成品を-30~-10℃で保存します。

よくあるご質問(FAQ)

ABI PRISM 7000 および Applied Biosystems 7300、7500、7500、7900HT SystemのSDS ソフトウェアでは、"Relative Quantification Plate Assay(ddCt)”を指定した場合、なぜ"ADD DISSOCIATION CURVE"ボタンが無効になってしまうのですか?

旧バージョンのソフトウェアでは、Relative Quantification Plate(⊿⊿Ct)アッセイを行う場合、同一ファイル中に融解曲線を設定することができません。ただし最近の機種や、7500/7500fastの最新のsofware( ver.2.0.5)では、サイクルステージの直後にmelt curve(融解曲線)が設定可能となっています。 なお旧バージョンのソフトウェアの場合は、Relative Quantification Plate(⊿⊿Ct)アッセイを行った後に、新しいRunファイルを作成し、融解曲線のみのプログラムでRunを行ってください。 融解曲線のみのRunを行う場合、"File"から "New"を選択します。展開された" New Document Wizard"画面中の"Assay"のプルダウンメニューから"DISSOCIATION"を選択し、融解曲線のみのRunを行ってください。この場合、解析ファイルとは別に融解曲線のみのSDSファイルが作成されます。

How can I remove genomic DNA contamination from my sample prior to performing RT-PCR?

If amplification products are generated in the control tube/well that contains no reverse transcriptase (i.e., the no-RT control), it may be necessary to eliminate residual genomic DNA from the RNA sample. Use the following protocol to remove genomic DNA from the total RNA preparation.Random primers are the best choice for degraded RNA, RNA with heavy secondary structure, non-polyadenylated RNA, or prokaryotic RNA. It is recommended only for two-step RT-PCR, and typically gives the highest yields, although the cDNA may not necessarily be full length. Oligo(dT) primers are good to use when trying to recover full-length cDNA from 2-step RT-PCR. The reaction is influenced by secondary structure and RNA quality. Gene specific primers should be used for very specific, mainly one-step RT-PCR reactions. Random primers are the best choice for degraded RNA, RNA with heavy secondary structure, non-polyadenylated RNA, or prokaryotic RNA. It is recommended only for two-step RT-PCR, and typically gives the highest yields, although the cDNA may not necessarily be full length. Oligo(dT) primers are good to use when trying to recover full-length cDNA from 2-step RT-PCR. The reaction is influenced by secondary structure and RNA quality. Gene specific primers should be used for very specific, mainly one-step RT-PCR reactions.

Add the following to an autoclaved 0.5 mL microcentrifuge tube on ice:
1.Total RNA, ideally, less than or equal to 1 µg. (See Note 1 below.)
2.1.0 µL of 10X DNase buffer (200 mM Tris, pH 8.3, 500 mM KCl, 20 mM MgCl2).
3.0.1 U-3.0 U of DNase I (RNase-free, Cat. No. 18047019) or 1.0 U Dnase I, Amplification Grade (Cat. No. 18068015. (See Note 2 below.)
4.Bring volume up to 10 µL with DEPC-treated water.
5.Incubate at room temperature for 15 min. (See Note 3 below.)
6.Terminate the reaction by adding 1 µL 25 mM EDTA and heat 10 min at 65 degrees C. (See Note 4 below.)
7.Place on ice for 1 minute.
8.Collect by brief centrifugation. This mixture can be used directly for reverse transcription.

Please note the following:
1.To work with higher quantities of RNA, scale up the entire reaction linearly. Do not exceed 2 µg RNA in the 10 µL reaction. More RNA will increase the viscosity of the solution and prevent the DNAse I from diffusing and finding the DNA.
2.DNAse I, Amplification Grade has been extensively purified to remove trace ribonuclease activities commonly associated with other "RNAse-free" enzyme preparations and does not require the addition of placental RNAse inhibitor.
3.It is important not to exceed the 15 minute incubation time or the room temperature incubation. Higher temperatures and longer times could lead to Mg2+-dependent hydrolysis of the RNA.
4.This procedure requires careful pipetting of all solutions so that the concentration of divalent metal cation (Mg2+) is controlled.
5.Because the DNAse I must be heated to 65 degrees C to inactivate the enzyme, the concentration of free divalent metal ions must be low enough (less than 1 mM) after addition of the EDTA to prevent chemical hydrolysis of the RNA. See references below.
After the addition of EDTA, there is an approximately 1:1 molar ratio of Mg2+ :EDTA. EDTA chelates Mg2+ molecules on a 1:1 molar basis. Therefore, this RNA can be directly used in a reverse transcription reaction. First-strand reverse transcription buffers typically result in a final concentration of 2.5 mM Mg2+. If the reverse transcription buffer does not contain MgCl2, add it to the reaction at a final concentration of 2.5 mM. This results in a net final concentration of approximately 2.25 to 2.5 mM MgCl2.

References on RNA hydrolysis:
Molekulyarnaya Biologiya (1987) 21:1235-1241.
References on the mechanism of hydrolysis by other cations:
Eichorn GL and Butzov JY (1965) Biopolymers 3:79.
Butzov JY and Eichorn GL (1965) Biopolymers 3:95.
Farkas WR (1968) Biochim Biophys Acta 155:401.
The authors of the first paper express the opinion that the mechanism of the nonspecific hydrolysis by cations which proceeds through 2',3' cyclic phosphate formation is similar to that of specific hydrolysis such as RNA splicing.

How much RNA should be employed for first-strand cDNA synthesis?

The amount of RNA template for a cDNA synthesis is highly flexible and depends upon the amount of sample available and an individual's need. In general, 1 µg total RNA is used in a typical 20-µL RT reaction.

Find additional tips, troubleshooting help, and resources within ourReverse Transcription and RACE Support Center.

Should I treat the cDNA with RNase H prior to downstream processing?

Some feel that the RNA in the RNA:DNA duplex after reverse transcription will inhibit PCR primers from annealing and amplifying the cDNA. The RNA is still present when using RNase H-mutant RTs. RNase H frees the cDNA from the RNA. On the other hand, some feel that the 95 degrees C denaturing step will cause the RNA primers to fall off the DNA and therefore RNase H treatment is not necessary. Therefore, this step is optional. For cloning of larger fragments, RNase H treatment can be beneficial.

What percentage of RNA is converted to cDNA when performing reverse transcription?

This depends highly on the quality of the sample. mRNA itself makes up 1-5% of total RNA. Depending on the primer and enzyme used, reverse transcription can covert >70% of that into cDNA.

Find additional tips, troubleshooting help, and resources within our Reverse Transcription and RACE Support Center.

引用および参考文献 (3)

引用および参考文献
Abstract
Clinical accuracy of a PLEX-ID flu device for simultaneous detection and identification of influenza viruses A and B.
Authors:Tang YW, Lowery KS, Valsamakis A, Schaefer VC, Chappell JD, White-Abell J, Quinn CD, Li H, Washington CA, Cromwell J, Giamanco CM, Forman M, Holden J, Rothman RE, Parker ML, Ortenberg EV, Zhang L, Lin YL, Gaydos CA,
Journal:J Clin Microbiol
PubMed ID:23077123
Respiratory tract infections caused by influenza A and B viruses often present nonspecifically, and a rapid, high-throughput laboratory technique that can identify influenza viruses is clinically and epidemiologically desirable. The PLEX-ID Flu assay (Abbott Molecular Inc., Des Plaines, IL) incorporates multilocus PCR and electrospray ionization-mass spectrometry to detect and differentiate ... More
Identification of a novel coronavirus in patients with severe acute respiratory syndrome.
Authors:Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguière AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Müller S, Rickerts V, Stürmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW,
Journal:N Engl J Med
PubMed ID:12690091
'BACKGROUND: The severe acute respiratory syndrome (SARS) has recently been identified as a new clinical entity. SARS is thought to be caused by an unknown infectious agent. METHODS: Clinical specimens from patients with SARS were searched for unknown viruses with the use of cell cultures and molecular techniques. RESULTS: A ... More
Two isoforms of Npap60 (Nup50) differentially regulate nuclear protein import.
Authors:Ogawa Y, Miyamoto Y, Asally M, Oka M, Yasuda Y, Yoneda Y,
Journal:Mol Biol Cell
PubMed ID:20016008
Npap60 (Nup50) is a nucleoporin that binds directly to importin alpha. In humans, there are two Npap60 isoforms: the long (Npap60L) and short (Npap60S) forms. In this study, we provide both in vitro and in vivo evidence that Npap60L and Npap60S function differently in nuclear protein import. In vitro binding ... More