Dynabeads™ M-450 Epoxy
Dynabeads™ M-450 Epoxy
Invitrogen™

Dynabeads™ M-450 Epoxy

Dynabeads™ M-450エポキシビーズは、分子アプリケーションの上流のカスタム細胞単離プロトコルに最適です。精製された抗体をこれらのビーズと組み合わせて使用することで、抗体の方向性が良好な磁気細胞分離培地を作成できます。カスタム抗体がある場合の細胞分離に最適:ビーズ表面への抗体の低バックグラウンド共有結合により、これらのビーズは、下流でのビーズ放出が不要な場合の細胞分離アプリケーションに最適です。超高速プロトコル:分子分析の上流で標的細胞集団を迅速に単離します• カスタム抗体を必要とする細胞単離手順に最適です•異なるカスタム抗体を異なるビーズに結合させることで詳細を見る
製品番号(カタログ番号)数量
140115 mL
製品番号(カタログ番号) 14011
価格(JPY)
-
見積もりを依頼する
数量:
5 mL
Dynabeads™ M-450エポキシビーズは、分子アプリケーションの上流のカスタム細胞単離プロトコルに最適です。精製された抗体をこれらのビーズと組み合わせて使用することで、抗体の方向性が良好な磁気細胞分離培地を作成できます。

カスタム抗体がある場合の細胞分離に最適:
ビーズ表面への抗体の低バックグラウンド共有結合により、これらのビーズは、下流でのビーズ放出が不要な場合の細胞分離アプリケーションに最適です。

超高速プロトコル:

分子分析の上流で標的細胞集団を迅速に単離します

• カスタム抗体を必要とする細胞単離手順に最適です
•異なるカスタム抗体を異なるビーズに結合させることで、特定の細胞サブ集団を選択できます

免疫沈降(IP)には推奨されません:
これらの4.5ミクロンビーズは、1 μmおよび2.8 μmのトシル活性化やエポキシコーティングDynabeads™と比較して、単位質量あたりの表面積が小さいため、IPには推奨されません。Dynabeadsタンパク質A(10001D、10002D)、Dynabeadsタンパク質G(10003D、10004D)、またはDynabeads免疫沈降キット(10006D、10007D)のいずれかを使用してください

結合手順の概要:
精製した抗体を一晩でビーズ表面に共有結合できます。これらの4.5 µm Dynabeads™で、細胞単離手順に使用する抗体をインキュベートするだけです。最適な結合は、高pH(8.5~9.5)および37℃で発生します。pH不安定性を持つ抗体の場合は、pH 7.4の代替バッファーで結合できます。

Dynabeads™について:
Dynabeads™はノンポーラス、単分散の超常磁性ビーズです。溶液中の移動性が高いため、ビーズに結合した抗体は細胞懸濁液と連続的に相互作用します。これらの4.5 µm超常磁性ビーズは、磁場に置かれると強く吸引されます。強い磁場を持つラックにチューブを移送すると、ビーズは穏やかに標的細胞をチューブ壁に引き寄せます。ビーズと結合細胞がチューブ壁に集中している状態で、非標的細胞を含む上清液を簡単かつ迅速に移し替えたり、ピペットで除去したりできます。洗浄ステップも同様に行います。

Dynabeads™ M-450エポキシのビーズ特性:
• グリシジルエーテル(エポキシ)基でコーティング
• 疎水性、pH中性
• 一級アミン(NH2)またはスルフィドリル(SH)基による共有結合
• 4.5 µmの大きなビーズサイズは細胞単離に最適
• 4.5 µmの大きなビーズサイズはIPアプリケーションには推奨されません
研究用にのみ使用できます。診断用には使用いただけません。
仕様
細胞タイプすべての種のすべての細胞
単離技術分子アプリケーションのための除去、ポジティブ単離
セル数合計で約2x10^9個の細胞を処理可能
出力実行可能性≧95%
製品ラインDYNAL、Dynabeads
純度または品質グレード研究グレード
数量5 mL
反応性全生物種
サンプルタイプPBMC、組織消化物、血液
出荷条件室温
出発物質セル番号1つの単離あたり1 x 10^7個の細胞
ターゲット種全生物種
直径(メートル法)4.5 μm
製品タイプエポキシビーズ
Unit SizeEach
組成および保存条件
2~8℃

よくあるご質問(FAQ)

My Dynabeads magnetic beads are not pelleting well with the magnet. Do you have any suggestions for me?

Please review the following possibilities for why your Dynabeads magnetic beads are not pelleting:

- The solution is too viscous.
- The beads have formed aggregates because of protein-protein interaction.

Try these suggestions: - Increase separation time (leave tub on magnet for 2-5 minutes)
- Add DNase I to the lysate (~0.01 mg/mL)
- Increase the Tween 20 concentration to ~0.05% of the binding and/or washing buffer.
- Add up to 20 mM beta-merecaptoethanol to the binding and/or wash buffers.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

I have a long double-stranded DNA fragment I would like to isolate. What product do you recommend?

For biotin-labeled DNA that is less than 1 kb, we recommend you use Dynabeads M270 Streptavidin (Cat. No. 65305) and MyOne C1 magnetic beads (Cat. No. 65001). We recommend our Dynabeads KilobaseBINDER Kit (Cat. No. 60101), which is designed to immobilize long (>1 kb) double-stranded DNA molecules. The KilobaseBINDER reagent consists of M-280 Streptavidin-coupled Dynabeads magnetic beads along with a patented immobilization activator in the binding solution to bind to long, biotinylated DNA molecules for isolation. Please see the following link (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/napamisc/capture-of-biotinylated-targets/immobilisation-of-long-biotinylated-dna-fragments.html) for more information in regards to long biotinylated DNA fragment isolation.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

Can I use Dynabeads magnetic beads to isolate single-stranded DNA templates?

Yes, Dynabeads magnetic beads can be used to isolate single-stranded DNA. Streptavidin Dynabeads magnetic beads can be used to target biotinylated DNA fragments, followed by denaturation of the double-stranded DNA and removal of the non-biotinylated strand. The streptavidin-coupled Dynabeads magnetic beads will not inhibit any enzymatic activity. This enables further handling and manipulation of the bead-bound DNA directly on the solid phase. Please see the following link (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/napamisc/capture-of-biotinylated-targets/preparing-single-stranded-dna-templates.html) for more information in regards to single-stranded DNA capture.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

What is the magnetic susceptibility for Dynabeads magnetic beads?

Magnetic susceptibility is a measure of how quickly the beads will migrate to the magnet. This will depend on the iron content and the character of the iron oxide. The magnetic susceptibility given for the Dynabeads magnetic beads is the mass susceptibility, given either as cgs units/g or m^3/kg (the latter being an SI unit). For ferri- and ferromagnetic substances, the magnetic mass susceptibility is dependent upon the magnetic field strength (H), as the magnetization of such substances is not a linear function of H but approaches a saturation value with increasing field. For that reason, the magnetic mass susceptibility of the Dynabeads magnetic beads is determined by a standardized procedure under fixed conditions. The magnetic mass susceptibility given in our catalog is thus the SI unit. Conversion from Gaussian (cgs, emu) units into SI units for magnetic mass susceptibility is achieved by multiplying the Gaussian factor (emu/g or cgs/g) by 4 pi x 10^-3. The resulting unit is also called the rationalized magnetic mass susceptibility, which should be distinguished from the (SI) dimensionless magnetic susceptibility unit. In general, magnetic mass susceptibility is a measure of the force (Fz) influencing an object positioned in a nonhomogenous magnetic field. The magnetic mass susceptibility of the Dynabeads magnetic beads is measured by weighing a sample, and then subjecting the sample to a magnetic field of known strength. The weight (F1) is then measured, and compared to the weight of the sample when the magnetic field is turned off (F0). The susceptibility is then calculated as K x 10^-3 = [(F1-F0) x m x 0.335 x 10^6], where K is the mass susceptibility of the sample of mass m. The susceptibility is then converted to SI units.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

How can I determine coupling efficiency of Dynabeads magnetic beads?

There are different methods to check binding of ligands to the beads, including optical density (OD) measurement, fluorescent labeling, and radioactive labeling.

For OD measurement, you would measure the OD of the ligand before immobilization to the beads and compare it with the ligand concentration that is left in the supernatant after coating. This gives a crude measurement of how much protein has bound to the beads.

Protocol:

1.Set spectrophotometer to the right wavelength. As a blank, use the Coupling Buffer.
2.Measure the absorbance of the Pre-Coupling Solution. A further dilution may be necessary to read the absorbance, depending upon the amount of ligand added.
3.Measure the absorbance of the Post-Coupling Solution. A dilution may be necessary to read the absorbance.
4.Calculate the coupling efficiency, expressed as the % protein uptake, as follows. [(Pre-Coupling Solution x D) - (Post-Coupling Solution x D)] x 100/(Pre-Coupling Solution x D) where D = dilution factor.

For fluorescent labeling, we suggest negatively quantifying the amount of ligand bound by measuring ligand remaining in the coupling supernatant (compared to the original sample), rather than directly measuring the ligands on the beads. Add labeled ligand to the beads, and measure how much ligand is left in the supernatant (not bound to the beads). By comparing this with the total amount added in the first place, you can then calculate how much of the ligand that has been bound to the beads. Keep in mind that the Dynabeads magnetic beads are also autofluorescent, which is why direct measuring of fluorescence of the bead-bound ligands is not recommended, but rather this indirect approach. The label could be, for example, FITC/PE. Some researchers perform a direct approach with success (using a flow cytometer).

Radioactive labeling is the most sensitive method of the three, but it is also the most difficult one. It involves radioactively labeling a portion of the ligand. We use radiolabeled I-125 in tracer amounts and mix it with "cold" ligands in a known ratio before coupling. The absolute quantities for the ligand on the beads should be obtained by measuring the beads in a scintillation (gamma) counter and comparing the cpm with a standard.

Protocol:

1.Take out an appropriate amount of beads and wash the beads in 1 mL of binding buffer.
2.Pipette out desired amount of human IgG in a separate tube.
3.Mix the human IgG with I-125-labeled human IgG (30,000 - 100,000 cpm).
4.Dilute the mixture of human IgG and I-125-labeled human IgG to 100 mL in binding buffer.
5.Incubate for 30 minutes at room temperature and measure the cpm in a scintillation counter.
6.Wash the beads (with coating) four times, and measure cpm again.
The % binding is calculated by using the equation : (cpm after washing/cpm before washing)x100%.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

引用および参考文献 (4)

引用および参考文献
Abstract
The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells.
Authors:Longo PG,Laurenti L,Gobessi S,Sica S,Leone G,Efremov DG
Journal:Blood
PubMed ID:17928528
L-selectin-dependent leukocyte adhesion to microvascular but not to macrovascular endothelial cells of the human coronary system.
Authors:Zakrzewicz A, Gräfe M, Terbeek D, Bongrazio M, Auch-Schwelk W, Walzog B, Graf K, Fleck E, Ley K, Gaehtgens P,
Journal:Blood
PubMed ID:9129027
'To characterize L-selectin-dependent cell adhesion to human vascular endothelium, human cardiac microvascular endothelial cells (HCMEC) and human coronary endothelial cells (HCEC) were isolated from explanted human hearts. The adhesion behavior of human (NALM-6) and mouse (300.19) pre-B cells transfected with cDNA encoding for human L-selectin was compared with that of ... More
Intranasal vaccination with recombinant outer membrane protein CD and adamantylamide dipeptide as the mucosal adjuvant enhances pulmonary clearance of Moraxella catarrhalis in an experimental murine model.
Authors:Becker PD, Bertot GM, Souss D, Ebensen T, Guzmán CA, Grinstein S,
Journal:Infect Immun
PubMed ID:17101651
Moraxella catarrhalis causes acute otitis media in children and lower respiratory tract infections in adults and elderly. In children the presence of antibodies against the highly conserved outer membrane protein CD correlates with protection against infection, suggesting that this protein may be useful as a vaccine antigen. However, native CD ... More
High-affinity recombinant antibody fragments (Fabs) can be applied in peptide enrichment immuno-MRM assays.
Authors:Whiteaker JR, Zhao L, Frisch C, Ylera F, Harth S, Knappik A, Paulovich AG
Journal:
PubMed ID:24568200
High-affinity antibodies binding to linear peptides in solution are a prerequisite for performing immuno-MRM, an emerging technology for protein quantitation with high precision and specificity using peptide immunoaffinity enrichment coupled to stable isotope dilution and targeted mass spectrometry. Recombinant antibodies can be generated from appropriate libraries in high-throughput in an ... More