Dynabeads™ M-280 Tosylactivated
Dynabeads™ M-280 Tosylactivated
Invitrogen™

Dynabeads™ M-280 Tosylactivated

抗体、ペプチド、インタクトタンパク質、および機能酵素を磁気ビーズの表面に共有結合する場合は、Dynabeads™トシル活性化をお選びください。最適な抗体配向性により、これらのビーズはタンパク質やタンパク質複合体の免疫沈降に最適です。タンパク質複合体の免疫沈降に最適:ビーズ表面への抗体の低バックグラウンド共有結合により、Dynabeadsトシル活性化はタンパク質およびタンパク質複合体の免疫沈降(共免疫沈降詳細を見る
製品番号(カタログ番号)数量
142032 mL
1420410 mL
製品番号(カタログ番号) 14203
価格(JPY)
-
見積もりを依頼する
数量:
2 mL
抗体、ペプチド、インタクトタンパク質、および機能酵素を磁気ビーズの表面に共有結合する場合は、Dynabeads™トシル活性化をお選びください。最適な抗体配向性により、これらのビーズはタンパク質やタンパク質複合体の免疫沈降に最適です。

タンパク質複合体の免疫沈降に最適:
ビーズ表面への抗体の低バックグラウンド共有結合により、Dynabeadsトシル活性化はタンパク質およびタンパク質複合体の免疫沈降(共免疫沈降、Co-IP)に最適です。Dynabeadsトシル活性化は、ビーズの穏やかで迅速な磁力選鉱と短いインキュベーション時間(高速な表面ベース結合カイネティクスにより可能)により、高不安定性または一過性(短命)のタンパク質複合体の免疫沈降に最適です。

超高速プロトコル:

• 時間単位ではなく数分でタンパク質複合体のメンバーを同定
• 一過性および不安定な複合体を同定するのに十分な時間分解能
• 長いプロトコルでは識別できない結合パートナーを特定
• 迅速なプロトコルにより、すでに超低レベルのバックグラウンド結合をさらに低減
• より強力なシグナルノイズ比

アプリケーション:
• タンパク質およびタンパク質複合体のIP
•下流アッセイ用に機能酵素をビーズ表面に結合
• ペプチドをビーズ表面に結合させてバインダーを特定

以下のようなペプチド、タンパク質、および酵素を精製:
• 一時的に安定
• 構造的にインタクト
• 温度的に不安定
• ネイティブコンフォメーションかつ機能的

結合手順の概要:
Dynabeadsトシル活性化を用いて目的のリガンドをインキュベートすることで、一晩で共有結合が行われます。Dynabeadsトシル活性化と一般的に結合するリガンドには、ペプチドやタンパク質(免疫沈降または共免疫沈降用の抗体など)があります。結合は中性pHから高pH、および37℃で発生します。pH 8.5∼9.5での結合を推奨しますが、pH不安定性を持つリガンドの場合は、pH 7.4の代替バッファーで結合を行うことができます。

リガンド結合ステップが完了すると、実際の Dynabeads トシル活性化の表面コーティングが不活性になり、非特異的結合が低くなります。

Dynabeadsについて
Dynabeadsはノンポーラス、単分散の超常磁性ビーズです。溶液中の移動性が高いため、ビーズに結合したリガンドはサンプル容量全体と連続的に相互作用します。超常磁性ビーズは、強い磁場を持つラック(赤いナビゲーションバーからBrands(ブランド)> Dynal™ > Magnets(マグネット)と選択)にチューブを移送することでチューブ壁に引き寄せられます。強力な磁場により、ビーズがチューブ壁にすばやく引き寄せられるため、ピペットで上清を簡単かつ完全に除去できます。洗浄ステップも同様に行います。

Dynabeadsトシル活性化のビーズ表面特性:
•p-トルエン-スルホンニル(トシル)基
• 疎水性、pH中性
• 一級アミン(NH2)またはスルフィドリル(SH)基による共有結合

1ミリグラムビーズあたりの結合能:
リガンドによって異なります(例 5~10µg IgG)
研究用途にのみご使用ください。診断目的には使用できません。
仕様
最小溶出量5 μL
フォーマット懸濁液中のビーズ
高スループット適合性ハイスループットに対応
純度または品質グレード研究グレード
数量2 mL
サンプルタイプあらゆるサンプルタイプ
品質保持期間製造日から36カ月
出荷条件室温
表面機能p-トルエン-スルフォニル、トシル活性化
製品ラインDYNAL、Dynabeads
タイプトシル活性化ビーズ
Unit SizeEach
組成および保存条件
これらのビーズは2~8℃で保管してください。

よくあるご質問(FAQ)

My Dynabeads magnetic beads are not pelleting well with the magnet. Do you have any suggestions for me?

Please review the following possibilities for why your Dynabeads magnetic beads are not pelleting:

- The solution is too viscous.
- The beads have formed aggregates because of protein-protein interaction.

Try these suggestions: - Increase separation time (leave tub on magnet for 2-5 minutes)
- Add DNase I to the lysate (~0.01 mg/mL)
- Increase the Tween 20 concentration to ~0.05% of the binding and/or washing buffer.
- Add up to 20 mM beta-merecaptoethanol to the binding and/or wash buffers.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

I have a long double-stranded DNA fragment I would like to isolate. What product do you recommend?

For biotin-labeled DNA that is less than 1 kb, we recommend you use Dynabeads M270 Streptavidin (Cat. No. 65305) and MyOne C1 magnetic beads (Cat. No. 65001). We recommend our Dynabeads KilobaseBINDER Kit (Cat. No. 60101), which is designed to immobilize long (>1 kb) double-stranded DNA molecules. The KilobaseBINDER reagent consists of M-280 Streptavidin-coupled Dynabeads magnetic beads along with a patented immobilization activator in the binding solution to bind to long, biotinylated DNA molecules for isolation. Please see the following link (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/napamisc/capture-of-biotinylated-targets/immobilisation-of-long-biotinylated-dna-fragments.html) for more information in regards to long biotinylated DNA fragment isolation.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

Can I use Dynabeads magnetic beads to isolate single-stranded DNA templates?

Yes, Dynabeads magnetic beads can be used to isolate single-stranded DNA. Streptavidin Dynabeads magnetic beads can be used to target biotinylated DNA fragments, followed by denaturation of the double-stranded DNA and removal of the non-biotinylated strand. The streptavidin-coupled Dynabeads magnetic beads will not inhibit any enzymatic activity. This enables further handling and manipulation of the bead-bound DNA directly on the solid phase. Please see the following link (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/napamisc/capture-of-biotinylated-targets/preparing-single-stranded-dna-templates.html) for more information in regards to single-stranded DNA capture.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

What is the magnetic susceptibility for Dynabeads magnetic beads?

Magnetic susceptibility is a measure of how quickly the beads will migrate to the magnet. This will depend on the iron content and the character of the iron oxide. The magnetic susceptibility given for the Dynabeads magnetic beads is the mass susceptibility, given either as cgs units/g or m^3/kg (the latter being an SI unit). For ferri- and ferromagnetic substances, the magnetic mass susceptibility is dependent upon the magnetic field strength (H), as the magnetization of such substances is not a linear function of H but approaches a saturation value with increasing field. For that reason, the magnetic mass susceptibility of the Dynabeads magnetic beads is determined by a standardized procedure under fixed conditions. The magnetic mass susceptibility given in our catalog is thus the SI unit. Conversion from Gaussian (cgs, emu) units into SI units for magnetic mass susceptibility is achieved by multiplying the Gaussian factor (emu/g or cgs/g) by 4 pi x 10^-3. The resulting unit is also called the rationalized magnetic mass susceptibility, which should be distinguished from the (SI) dimensionless magnetic susceptibility unit. In general, magnetic mass susceptibility is a measure of the force (Fz) influencing an object positioned in a nonhomogenous magnetic field. The magnetic mass susceptibility of the Dynabeads magnetic beads is measured by weighing a sample, and then subjecting the sample to a magnetic field of known strength. The weight (F1) is then measured, and compared to the weight of the sample when the magnetic field is turned off (F0). The susceptibility is then calculated as K x 10^-3 = [(F1-F0) x m x 0.335 x 10^6], where K is the mass susceptibility of the sample of mass m. The susceptibility is then converted to SI units.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

How can I determine coupling efficiency of Dynabeads magnetic beads?

There are different methods to check binding of ligands to the beads, including optical density (OD) measurement, fluorescent labeling, and radioactive labeling.

For OD measurement, you would measure the OD of the ligand before immobilization to the beads and compare it with the ligand concentration that is left in the supernatant after coating. This gives a crude measurement of how much protein has bound to the beads.

Protocol:

1.Set spectrophotometer to the right wavelength. As a blank, use the Coupling Buffer.
2.Measure the absorbance of the Pre-Coupling Solution. A further dilution may be necessary to read the absorbance, depending upon the amount of ligand added.
3.Measure the absorbance of the Post-Coupling Solution. A dilution may be necessary to read the absorbance.
4.Calculate the coupling efficiency, expressed as the % protein uptake, as follows. [(Pre-Coupling Solution x D) - (Post-Coupling Solution x D)] x 100/(Pre-Coupling Solution x D) where D = dilution factor.

For fluorescent labeling, we suggest negatively quantifying the amount of ligand bound by measuring ligand remaining in the coupling supernatant (compared to the original sample), rather than directly measuring the ligands on the beads. Add labeled ligand to the beads, and measure how much ligand is left in the supernatant (not bound to the beads). By comparing this with the total amount added in the first place, you can then calculate how much of the ligand that has been bound to the beads. Keep in mind that the Dynabeads magnetic beads are also autofluorescent, which is why direct measuring of fluorescence of the bead-bound ligands is not recommended, but rather this indirect approach. The label could be, for example, FITC/PE. Some researchers perform a direct approach with success (using a flow cytometer).

Radioactive labeling is the most sensitive method of the three, but it is also the most difficult one. It involves radioactively labeling a portion of the ligand. We use radiolabeled I-125 in tracer amounts and mix it with "cold" ligands in a known ratio before coupling. The absolute quantities for the ligand on the beads should be obtained by measuring the beads in a scintillation (gamma) counter and comparing the cpm with a standard.

Protocol:

1.Take out an appropriate amount of beads and wash the beads in 1 mL of binding buffer.
2.Pipette out desired amount of human IgG in a separate tube.
3.Mix the human IgG with I-125-labeled human IgG (30,000 - 100,000 cpm).
4.Dilute the mixture of human IgG and I-125-labeled human IgG to 100 mL in binding buffer.
5.Incubate for 30 minutes at room temperature and measure the cpm in a scintillation counter.
6.Wash the beads (with coating) four times, and measure cpm again.
The % binding is calculated by using the equation : (cpm after washing/cpm before washing)x100%.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

引用および参考文献 (3)

引用および参考文献
Abstract
Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells.
Authors:Postovit LM,Margaryan NV,Seftor EA,Kirschmann DA,Lipavsky A,Wheaton WW,Abbott DE,Seftor RE,Hendrix MJ
Journal:Proceedings of the National Academy of Sciences of the United States of America
PubMed ID:18334633
Embryonic stem cells sustain a microenvironment that facilitates a balance of self-renewal and differentiation. Aggressive cancer cells, expressing a multipotent, embryonic cell-like phenotype, engage in a dynamic reciprocity with a microenvironment that promotes plasticity and tumorigenicity. However, the cancer-associated milieu lacks the appropriate regulatory mechanisms to maintain a normal cellular ... More
Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier.
Authors:Neal MD, Leaphart C, Levy R, Prince J, Billiar TR, Watkins S, Li J, Cetin S, Ford H, Schreiber A, Hackam DJ,
Journal:J Immunol
PubMed ID:16493066
Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis, although the mechanisms by which bacterial translocation occurs remain largely unknown. We hypothesized that bacterial translocation across the intact barrier occurs after internalization of the bacteria by enterocytes in a process resembling phagocytosis and that ... More
High-sensitivity MALDI-TOF MS quantification of anthrax lethal toxin for diagnostics and evaluation of medical countermeasures.
Authors:Boyer AE, Gallegos-Candela M, Quinn CP, Woolfitt AR, Brumlow JO, Isbell K, Hoffmaster AR, Lins RC, Barr JR
Journal:
PubMed ID:25673244
Inhalation anthrax has a rapid progression and high fatality rate. Pathology and death from inhalation of Bacillus anthracis spores are attributed to the actions of secreted protein toxins. Protective antigen (PA) binds and imports the catalytic component lethal factor (LF), a zinc endoprotease, and edema factor (EF), an adenylyl cyclase, ... More