Library Efficiency™ DH5α Competent Cells
Library Efficiency™ DH5α Competent Cells
Invitrogen™

Library Efficiency™ DH5α Competent Cells

Library Efficiency DH5αコンピテントセルは、>1 x 108 cfu/µgのプラスミドDNA形質転換効率を示す、ケミカルコンピテント細胞の多用途株です。Library Efficiency詳細を見る
製品番号(カタログ番号)数量
182630125 x 200 μL
製品番号(カタログ番号) 18263012
価格(JPY)
20,400
온라인 행사
Ends: 27-Mar-2026
34,100
割引額 13,700 (40%)
Each
お問い合わせください ›
数量:
5 x 200 μL
Library Efficiency DH5αコンピテントセルは、>1 x 108 cfu/µgのプラスミドDNA形質転換効率を示す、ケミカルコンピテント細胞の多用途株です。Library Efficiency Dh5αコンピテントセルは、難かしいクローニング構造や、限られた量のDNAを使用するあらゆるアプリケーションに最適です。これらの細胞の特徴:

•X-GalまたはBluo-Galを含むプレートにα-相補を加えることで青/白スクリーニングをサポートします。
•最小限の組み換えイベントでプラスミドDNAを維持します。
•ダウンストリームアプリケーション用の高収量プラスミド調製を提供します。
•M13mpクローニングベクターは、DH5α-FT、DH5αF'、DH5αFIQ、JM101の芝地上で増殖できます。

難かしいクローニングプロジェクトに最適です。
αLibrary Efficiency DH5コンピテントセルは、大きなプラスミドへの遺伝子のルーチンクローニングに推奨され、平滑末端ライゲーションなどの困難なクローン構造に適しています。Library Efficiency DH5αコンピテントセル>µ µは、中程度の形質転換効率を有しています( 100 L反応あたり1×10 8 cfu/gコントロールDNA)。この菌株はΦ80lacZΔM15遺伝子型も持っており、X-GalまたはBluo-Galのいずれかを含むプレート上で青/白スクリーニングが可能です。最後に、recA1変異はプラスミドDNAを増殖させながら組換え率を低減するのに役立ち、endA1変異は、DH5α細胞を、その後の抽出および精製のためにプラスミドDNAを増幅するための優れた選択肢とします。

遺伝子型:F- Φ80lacZΔM15Δ(lacZYA-argF)U169 recA1 endA1 hsdR17(rk-, mk+phoA supE44 thi-1 gyrA96 relA1λ-
研究用にのみ使用できます。診断用には使用いただけません。
仕様
抗生物質耐性菌No
青/白スクリーニング
メチル化DNAのクローニング不可
不安定DNAのクローニング不安定なDNAのクローニングには不適
F'エピソームを含むF’エピソームが欠落しています
高スループット適合性ハイスループット非対応(手動)
プラスミドの品質を向上
非メチル化DNAの調製非メチル化DNAの調製には適していません
製品ラインDH5a、Library Efficiency
製品タイプコンピテントセル
数量5 x 200 μL
組換えを抑制
出荷条件ドライアイス
T1ファージ-耐性(tonA)不可
形質転換効率レベル中効率 (10^8-10^9 cfu⁄µg)
フォーマットチューブ
E. coli
Unit SizeEach
組成および保存条件
内容:
•Library Efficiency DH5α コンピテントセル:5 バイアル、各 200µ l(合計 1 ml)
• pUC19 DNA( 10 pg/ul):1バイアル、50 µL
• S.O.C.培地:

2 ボトル、各 6 ml、コンピテントセルは-80℃で保存します。pUC19 DNAは-20℃で保存してください。SOC培地は4℃または室温で保管してください。

よくあるご質問(FAQ)

I am trying to clone an insert that is supposedly pretty toxic. I used DH5? and TOP10 cells for the transformation and got no colonies on the plate. Do you have any suggestions for me?

If the insert is potentially toxic to the host cells, here are some suggestions that you can try:

- After transforming TOP10 or DH5? cells, incubate at 25-30°C instead of 37°C. This will slow down the growth and will increase the chances of cloning a potentially toxic insert.
- Try using TOP10F' cells for the transformation, but do not add IPTG to the plates. These cells carry the lacIq repressor that represses expression from the lac promoter and so allows cloning of toxic genes. Keep in mind that in the absence of IPTG, blue-white screening cannot be performed.
- Try using Stbl2 cells for the transformation.

How do you recommend that I prepare my DNA for successful electroporation of E. coli?

For best results, DNA used in electroporation must have a very low ionic strength and a high resistance. A high-salt DNA sample may be purified by either ethanol precipitation or dialysis.

The following suggested protocols are for ligation reactions of 20ul. The volumes may be adjusted to suit the amount being prepared.

Purifying DNA by Precipitation: Add 5 to 10 ug of tRNA to a 20ul ligation reaction. Adjust the solution to 2.5 M in ammonium acetate using a 7.5 M ammonium acetate stock solution. Mix well. Add two volumes of 100 % ethanol. Centrifuge at 12,000 x g for 15 min at 4C. Remove the supernatant with a micropipet. Wash the pellet with 60ul of 70% ethanol. Centrifuge at 12,000 x g for 15 min at room temperature. Remove the supernatant with a micropipet. Air dry the pellet. Resuspend the DNA in 0.5X TE buffer [5 mM Tris-HCl, 0.5 mM EDTA (pH 7.5)] to a concentration of 10 ng/ul of DNA. Use 1 ul per transformation of 20 ul of cell suspension.

Purifying DNA by Microdialysis: Float a Millipore filter, type VS 0.025 um, on a pool of 0.5X TE buffer (or 10% glycerol) in a small plastic container. Place 20ul of the DNA solution as a drop on top of the filter. Incubate at room temperature for several hours. Withdraw the DNA drop from the filter and place it in a polypropylene microcentrifuge tube. Use 1ul of this DNA for each electrotransformation reaction.

You offer competent cells in Subcloning Efficiency, Library Efficiency and MAX Efficiency. How do these differ?

There are a few exceptions, but in general the difference is in guaranteed transformation efficiency as follows:

Subcloning Efficiency cells are guaranteed to produce at least 1.0 x 10E6 transformants per µg of transformed pUC19 or pUC18 supercoiled plasmid
Library Efficiency cells are guaranteed to produce at least 1.0 x 10E8 transformants per µg pUC19 or pUC18 DNA
MAX Efficiency cells are guaranteed to produce at least 1.0 x 10E9 transformants per µg pUC19 or pUC18 DNA

Do any Invitrogen competent cells contain DMSO in the freezing medium?

Yes, several of our competent cells products are frozen with DMSO. The presence of DMSO (dimethylsulfoxide) will generally be indicated in the MSDS files if you have a question about a particular product, but here is a list of commonly used products that are known to have DMSO in the freezing buffer:

One Shot OmniMAX 2 T1 Phage Resistant Cells, Cat. No. C8540-03

One Shot INV?F' Chemically Competent Cells, Cat. No. C2020-03 and C2020-06

One Shot MAX Efficiency DH5?-T1 Chemically Competent Cells, Cat. No. 12297-016

MAX Efficiency DH5?-T1 Phage Resistant Cells, Cat. No. 12034-013

MAX Efficiency DH5? Chemically Competent Cells, Cat. No. 18258-012

Library Efficiency DH5? Chemically Competent Cells, Cat. No. 18263-012

MAX Efficiency DH5? F'IQ Cells, Cat. No. 18288-019

MAX Efficiency Stbl2Chemically Competent Cells, Cat. No. 10268-019

Is S.O.C. medium absolutely required when recovering competent bacterial cells during transformation?

Many media can be used to grow transformed cells, including standard LB, SOB or TB broths. However, S.O.C. is the optimal choice for recovery of the cells before plating. The nutrient-rich formula with added glucose is often important for obtaining maximum transformation efficiencies.

引用および参考文献 (4)

引用および参考文献
Abstract
Changes in the mechanism of DNA integration in vitro induced by base substitutions in the HIV-1 U5 and U3 terminal sequences.
Authors: Brin Elena; Leis Jonathan;
Journal:J Biol Chem
PubMed ID:11788585
'We have reconstituted concerted human immunodeficiency virus type 1 (HIV-1) integration with specially designed mini-donor DNA, a supercoiled plasmid acceptor, purified bacterial-derived HIV-1 integrase (IN), and host HMG-I(Y) protein (Hindmarsh, P., Ridky, T., Reeves, R., Andrake, M., Skalka, A. M., and Leis, J. (1999) J. Virol. 73, 2994-3003). Integration in ... More
Identification and characterization of two cation binding sites in the integrin beta 3 subunit.
Authors: Cierniewska-Cieslak Aleksandra; Cierniewski Czeslaw S; Blecka Kamila; Papierak Malgorzata; Michalec Lidia; Zhang Li; Haas Thomas A; Plow Edward F;
Journal:J Biol Chem
PubMed ID:11796735
'The midsegment of the beta(3) subunit has been implicated in the ligand and cation binding functions of the beta(3) integrins. This region may contain a metal ion-dependent adhesion site (MIDAS) and fold into an I domain-like structure. Two recombinant fragments, beta(3)-(95-373) and beta(3)-(95-301), were expressed and found to bind fibrinogen. ... More
Requirement for either a host- or pectin-induced pectate lyase for infection of pisum sativum by nectriahematococca.
Authors:Rogers LM, Kim YK, Guo W, Gonzalez-Candelas L, Li D, Kolattukudy PE
Journal:Proc Natl Acad Sci U S A
PubMed ID:10931947
Fungal pathogens usually have multiple genes that encode extracellular hydrolytic enzymes that may degrade the physical barriers in their hosts during the invasion process. Nectria hematococca, a plant pathogen, has two inducible pectate lyase (PL) genes (pel) encoding PL that can help degrade the carbohydrate barrier in the host. pelA ... More
Molecular determinants of high affinity binding to group III metabotropic glutamate receptors.
Authors: Rosemond Erica; Peltekova Vanya; Naples Mark; Thøgersen Henning; Hampson David R;
Journal:J Biol Chem
PubMed ID:11744707
The amino-terminal domain containing the ligand binding site of the G protein-coupled metabotropic glutamate receptors (mGluRs) consists of two lobes that close upon agonist binding. In this study, we explored the ligand binding pocket of the Group III mGluR4 receptor subtype using site-directed mutagenesis and radioligand binding. The selection of ... More