Dynabeads™ mRNA Purification Kit (for mRNA purification from total RNA preps).
Dynabeads™ mRNA Purification Kit (for mRNA purification from total RNA preps).
Invitrogen™

Dynabeads™ mRNA Purification Kit (for mRNA purification from total RNA preps).

Dynabeads™ mRNA精製キットは、15分ほどでmRNAトランスクリプトームを迅速に単離し、高純度でインタクトなmRNAを精製します。このキットは、トータルRNA調製からmRNA分子を特異的に標的、捕捉、精製するように設計されています。Dynabeads™ mRNA精製キットを使用する利点:•15分ほどで高純度mRNAを得られる•詳細を見る
製品番号(カタログ番号)数量
610062 mL
製品番号(カタログ番号) 61006
価格(JPY)
-
見積もりを依頼する
数量:
2 mL
Dynabeads™ mRNA精製キットは、15分ほどでmRNAトランスクリプトームを迅速に単離し、高純度でインタクトなmRNAを精製します。このキットは、トータルRNA調製からmRNA分子を特異的に標的、捕捉、精製するように設計されています。Dynabeads™ mRNA精製キットを使用する利点:

•15分ほどで高純度mRNAを得られる
• トランスクリプトームを効率的に回復および濃縮
•ほぼすべての下流アプリケーションに適したmRNAを調製

高純度で迅速なmRNA単離
Dynabeads™ mRNA精製キットには、真核生物のトータルRNA調製からmRNAトランスクリプトームを単離するための磁気ビーズが含まれています(図を参照)。Dynabeads™磁気ビーズはサイズが均一で、溶液中で高い移動性を発揮します(図を参照)。そのため、ビーズの捕捉面は、mRNA捕捉フェーズでトータルRNAサンプル全体と迅速かつ継続的に相互作用できます。リボソームRNAおよび小RNA分子(トランスファーRNA、microRNA、核小体低分子RNA、および細胞質低分子RNA)はビーズに結合せず、廃棄されます。ポリアデニル化RNA種(mRNA)のみが取り込まれるため、よりクリーンで高感度な結果が得られます(図を参照)。約15分以内に高純度mRNAが単離され、下流アプリケーションですぐに使用できます。

直感的な濃縮手順
Dynabeads™ mRNA精製キットは、ポリアデニル化mRNAの濃縮において堅牢なアフィニティー精製原理を使用しています。オリゴ-(dT)25と結合した超常磁性Dynabeads™を、まず結合緩衝液で平衡化した後、精製されたトータルRNAと混合します。ビーズを洗浄し、汚染されたRNA種を除去した後、mRNAをわずか5 μLの10 mM Tris-HClで溶出します。このプロセス全体は、ネオジム磁石(別売)を使用することで容易になり、緩衝液交換中に磁気ビーズを迅速かつ効率的に固定できます。RNAは、以下を含むすべての下流分子アプリケーションに適しています。

•遺伝子クローニング
• cDNA合成、cDNAライブラリ構築
• RT-PCR、定量RT-PCR
• RPA(リボヌクレアーゼ保護アッセイ)
• サブトラクティブハイブリダイゼーション
• ドット/スロットハイブリダイゼーション
• プライマー伸長
研究用にのみ使用できます。診断用には使用いただけません。
仕様
溶出量5 to 20 μL
最終産物タイプmRNA
使用対象(アプリケーション)RT-PCR, qPCR, cDNA library construction, microarray analysis
グリーン機能Beads may be reused for multiple extractions
精製時間10 min.
数量2 mL
出荷条件室温
出発物質量≤100 μL
収量2 μg mRNA per 200 μL of beads (Binding capacity)
Isolation TechnologyMagnetic Bead
サンプルタイプTotal RNA
Unit SizeEach
組成および保存条件
2~8℃
2 mLビーズおよび緩衝液

よくあるご質問(FAQ)

I am getting DNA contamination after mRNA isolation using Dynabeads magnetic beads. Why is this?

There are several reasons why DNA contamination may occur:

- Incomplete DNA shearing.
- Incomplete removal of sample lysate after the hybridization step.
- Insufficient washing and/or removal of wash buffers.
- The ratio of sample to beads was too high.

My Dynabeads magnetic beads are not pelleting well with the magnet. Do you have any suggestions for me?

Please review the following possibilities for why your Dynabeads magnetic beads are not pelleting:

- The solution is too viscous.
- The beads have formed aggregates because of protein-protein interaction.

Try these suggestions: - Increase separation time (leave tub on magnet for 2-5 minutes)
- Add DNase I to the lysate (~0.01 mg/mL)
- Increase the Tween 20 concentration to ~0.05% of the binding and/or washing buffer.
- Add up to 20 mM beta-merecaptoethanol to the binding and/or wash buffers.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

I have a long double-stranded DNA fragment I would like to isolate. What product do you recommend?

For biotin-labeled DNA that is less than 1 kb, we recommend you use Dynabeads M270 Streptavidin (Cat. No. 65305) and MyOne C1 magnetic beads (Cat. No. 65001). We recommend our Dynabeads KilobaseBINDER Kit (Cat. No. 60101), which is designed to immobilize long (>1 kb) double-stranded DNA molecules. The KilobaseBINDER reagent consists of M-280 Streptavidin-coupled Dynabeads magnetic beads along with a patented immobilization activator in the binding solution to bind to long, biotinylated DNA molecules for isolation. Please see the following link (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/napamisc/capture-of-biotinylated-targets/immobilisation-of-long-biotinylated-dna-fragments.html) for more information in regards to long biotinylated DNA fragment isolation.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

Can I use Dynabeads magnetic beads to isolate single-stranded DNA templates?

Yes, Dynabeads magnetic beads can be used to isolate single-stranded DNA. Streptavidin Dynabeads magnetic beads can be used to target biotinylated DNA fragments, followed by denaturation of the double-stranded DNA and removal of the non-biotinylated strand. The streptavidin-coupled Dynabeads magnetic beads will not inhibit any enzymatic activity. This enables further handling and manipulation of the bead-bound DNA directly on the solid phase. Please see the following link (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/napamisc/capture-of-biotinylated-targets/preparing-single-stranded-dna-templates.html) for more information in regards to single-stranded DNA capture.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

What is the magnetic susceptibility for Dynabeads magnetic beads?

Magnetic susceptibility is a measure of how quickly the beads will migrate to the magnet. This will depend on the iron content and the character of the iron oxide. The magnetic susceptibility given for the Dynabeads magnetic beads is the mass susceptibility, given either as cgs units/g or m^3/kg (the latter being an SI unit). For ferri- and ferromagnetic substances, the magnetic mass susceptibility is dependent upon the magnetic field strength (H), as the magnetization of such substances is not a linear function of H but approaches a saturation value with increasing field. For that reason, the magnetic mass susceptibility of the Dynabeads magnetic beads is determined by a standardized procedure under fixed conditions. The magnetic mass susceptibility given in our catalog is thus the SI unit. Conversion from Gaussian (cgs, emu) units into SI units for magnetic mass susceptibility is achieved by multiplying the Gaussian factor (emu/g or cgs/g) by 4 pi x 10^-3. The resulting unit is also called the rationalized magnetic mass susceptibility, which should be distinguished from the (SI) dimensionless magnetic susceptibility unit. In general, magnetic mass susceptibility is a measure of the force (Fz) influencing an object positioned in a nonhomogenous magnetic field. The magnetic mass susceptibility of the Dynabeads magnetic beads is measured by weighing a sample, and then subjecting the sample to a magnetic field of known strength. The weight (F1) is then measured, and compared to the weight of the sample when the magnetic field is turned off (F0). The susceptibility is then calculated as K x 10^-3 = [(F1-F0) x m x 0.335 x 10^6], where K is the mass susceptibility of the sample of mass m. The susceptibility is then converted to SI units.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

引用および参考文献 (5)

引用および参考文献
Abstract
Identification of a novel glucose transporter-like protein-GLUT-12.
Authors:Rogers S, Macheda ML, Docherty SE, Carty MD, Henderson MA, Soeller WC, Gibbs EM, James DE, Best JD
Journal:Am J Physiol Endocrinol Metab
PubMed ID:11832379
'Facilitative glucose transporters exhibit variable hexose affinity and tissue-specific expression. These characteristics contribute to specialized metabolic properties of cells. Here we describe the characterization of a novel glucose transporter-like molecule, GLUT-12. GLUT-12 was identified in MCF-7 breast cancer cells by homology to the insulin-regulatable glucose transporter GLUT-4. The GLUT-12 cDNA ... More
Transcriptome analysis by strand-specific sequencing of complementary DNA.
Authors:Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A
Journal:Nucleic Acids Res
PubMed ID:19620212
High-throughput complementary DNA sequencing (RNA-Seq) is a powerful tool for whole-transcriptome analysis, supplying information about a transcript's expression level and structure. However, it is difficult to determine the polarity of transcripts, and therefore identify which strand is transcribed. Here, we present a simple cDNA sequencing protocol that preserves information about ... More
Transcriptome sequencing to detect gene fusions in cancer.
Authors:Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM
Journal:Nature
PubMed ID:19136943
Recurrent gene fusions, typically associated with haematological malignancies and rare bone and soft-tissue tumours, have recently been described in common solid tumours. Here we use an integrative analysis of high-throughput long- and short-read transcriptome sequencing of cancer cells to discover novel gene fusions. As a proof of concept, we successfully ... More
Widespread occurrence of antisense transcription in the human genome.
Authors:Yelin R, Dahary D, Sorek R, Levanon EY, Goldstein O, Shoshan A, Diber A, Biton S, Tamir Y, Khosravi R, Nemzer S, Pinner E, Walach S, Bernstein J, Savitsky K, Rotman G
Journal:Nat Biotechnol
PubMed ID:12640466
An increasing number of eukaryotic genes are being found to have naturally occurring antisense transcripts. Here we study the extent of antisense transcription in the human genome by analyzing the public databases of expressed sequences using a set of computational tools designed to identify sense-antisense transcriptional units on opposite DNA ... More
Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept.
Authors:Helmkampf M, Bruchhaus I, Hausdorf B
Journal:Proc Biol Sci
PubMed ID:18495619
Based on embryological and morphological evidence, Lophophorata was long considered to be the sister or paraphyletic stem group of Deuterostomia. By contrast, molecular data have consistently indicated that the three lophophorate lineages, Ectoprocta, Brachiopoda and Phoronida, are more closely related to trochozoans (annelids, molluscs and related groups) than to deuterostomes. ... More