LanthaScreen™ TR-FRET Androgen Receptor Coactivator Assay Kit
LanthaScreen™ TR-FRET Androgen Receptor Coactivator Assay Kit

LanthaScreen™ TR-FRET Androgen Receptor Coactivator Assay Kit

LanthaScreen™ TR-FRETアンドロゲン受容体コアクチベーターアッセイキットは、コアクチベーターリクルートのアゴニストまたはアゴニスト依存性コアクチベーターリクルートのアンタゴニストである潜在的アンドロゲン受容体(AR)リガンドの高感度かつ確実なハイスループットスクリーニングを実現します。アゴニストモード、アンタゴニストモードのどちらにおいても、ヘキサヒスチジンおよびグルタチオン-S-トランスフェラーゼ(GST)で標識したラットARリガンド結合ドメイン詳細を見る
製品番号(カタログ番号)数量
A15878800 x 20 μL assays
製品番号(カタログ番号) A15878
価格(JPY)
175,500
Online offer
Ends: 27-Mar-2026
292,500
割引額 117,000 (40%)
Each
お問い合わせください ›
数量:
800 x 20 μL assays
LanthaScreen™ TR-FRETアンドロゲン受容体コアクチベーターアッセイキットは、コアクチベーターリクルートのアゴニストまたはアゴニスト依存性コアクチベーターリクルートのアンタゴニストである潜在的アンドロゲン受容体(AR)リガンドの高感度かつ確実なハイスループットスクリーニングを実現します。アゴニストモード、アンタゴニストモードのどちらにおいても、ヘキサヒスチジンおよびグルタチオン-S-トランスフェラーゼ(GST)で標識したラットARリガンド結合ドメイン(AR-LBD)(単品でも購入可能)、テルビウム(TB)標識抗GST抗体、およびフルオレセイン標識コアクチベーターペプチドを使用して、均一なミックスアンドリードアッセイを行います。

アゴニストモード
LanthaScreen TR-FRETアンドロゲン受容体コアクチベーターアッセイを(アゴニスト化合物の同定のために)アゴニストモードで実施する場合、AR-LBDをリガンド試験化合物に加え、次いでフルオレセインコアクチベーターペプチドとTB抗GST抗体の混合物を加えます。室温でインキュベーションした後、TR-FRET 520:495 nmの発光比を計算し、これを使用して、化合物の線量反応曲線からEC50を決定します。このリガンドEC50は、受容体への結合、立体構造変化の惹起、およびコアクチベーターペプチドのリクルートに必要なリガンド量を表す複合値です(図参照)。

アンタゴニストモード
LanthaScreen TR-FRETアンドロゲン受容体コアクチベーターアッセイを(アンタゴニスト化合物の同定のために)アンタゴニストモードで実施する場合、AR-LBDをリガンド試験化合物に加え、次いでDHTアゴニスト、フルオレセインコアクチベーターペプチド、TB抗GST抗体の混合物を加えます。このモードで使用するDHTアゴニストの濃度は、最初にアゴニストモードで実施したアッセイで決定するEC80の濃度です。アンタゴニストモードで生成されたデータの例を以下の図に示します。
研究用にのみ使用できます。診断用には使用いただけません。
仕様
使用対象(アプリケーション)コファクター相互作用アッセイ、核内受容体アッセイ
リガンドAR
No. of Assays800 x 20 μL assays
製品タイプTR-FRET Androgen Receptor Coactivator Assay Kit
数量800 x 20 μL assays
製品ラインLanthaScreen
Unit SizeEach
組成および保存条件
ARリガンド結合ドメイン組換えタンパク質、チューブ1本(-68∼-85℃で保管)
ペプチド、チューブ1本(-5∼-30℃で保管)
TR-FRETバッファー、チューブ2本(-5∼-30℃で保管)
TB抗GST抗体、チューブ1本(-5∼-30℃で保管)
DTT、チューブ1本(-5∼-30℃で保管)

よくあるご質問(FAQ)

I'm using the TaqMan hPSC Scorecard Panel. How do I load the samples onto a 384-well plate if I only have a 16-channel pipette?

The tips of most 16-channel pipettes will align with every well in each column of the plate. However, if your cDNA reactions were set up in 8 wells of a 96-well plate or in 8-well PCR strips, additional sample will be required to compensate for the dead volume. When you insert 2 tips of the 16-channel pipette into 1 well, the tips can't reach the bottom of the well, resulting in a need for additional dead volume.

Find additional tips, troubleshooting help, and resources within our Real-Time PCR and Digital PCR Applications Support Center

How does the LanthaScreen technology compare to other TR-FRET assay formats?

We performed a comparison between the LanthaScreen assay and other commercially available TR-FRET assays from 2 different suppliers for the PKC kinase target. Our data revealed that the assays performed comparably, but that the LanthaScreen assay was simpler to optimize and contained fewer components that required optimization. The LanthaScreen assay is a two component system, whereas the other assay formats utilize a trimolecular mechanism which is more time consuming to optimize and has added costs.

For my kinase assay, can I pre-mix the Tb-Ab and EDTA so that I can stop the kinase assay and begin detection with a single reagent addition?

Yes, this is possible depending on the concentrations of reagents used and the time for which they are mixed. We recommend developing and optimizing the assay by using separate reagent additions, because this method will work under the widest range of conditions. Once the assay is optimized, the performance of the assay using pre-mixed antibody and EDTA can be evaluated. We have successfully developed robust assays in which the antibody and EDTA were pre-mixed and then stored overnight at 4 degrees C prior to use the following day. A loss of signal intensity was observed in this case, however, by using the ratiometric readout, this effect was minimal.

Are the LanthaScreen reagents stable to interference from Mg2+, Mn2+, and EDTA?

The chelate is completely stable to Mg2+. The amount of Mn2+ or EDTA that the chelate can tolerate depends largely on how long they are mixed together and the combination of additives used in the reaction. If a reaction requires either Mg2+ or Mn2+ for activation, it is best to stop the reaction by adding an equimolar amount (or slight excess) of EDTA to chelate the metal ions present. This will then essentially eliminate any interference on the terbium chelate by EDTA or Mn2+. Regardless, when LanthaScreen assays are performed using a ratiometric readout (division of the acceptor signal by the donor signal), any interference caused by Mn2+ or EDTA is largely cancelled out.

What is the optimal and/or maximum distance for a Tb-fluorescein pair?

The Förster radius, the distance at which energy transfer efficiency is half-maximal, is around 50-angstroms for the terbiumÆ fluorescein pair. However, the Förster radius does not give a complete indication of energy transfer efficiency when using long lifetime fluorophores such as terbium chelates. When using terbium chelates, energy transfer efficiency is determined by the distance of closest approach between the donor and acceptor during the excited state lifetime of the donor. In many assay systems, such as those designed using antibodies or peptides, there is a large degree of conformational freedom that allows the donor and acceptor to approach one another, effectively enhancing the FRET signal. Additionally, it is important to note that as the donor/acceptor pair approach one another and the efficiency of energy transfer increases, the fluorescent lifetime decreases to a comparable extent. From a practical standpoint, this means that when energy transfer is extremely efficient, FRET cannot be measured in time-resolved mode (because the energy transfer is complete before the measurement is made). This is another reason why TR-FRET assays based around terbium-labeled antibodies or streptavidin perform so well, because there exist a range of donor/acceptor distances, several of which are optimal for measuring FRET.