LanthaScreen™ TR-FRET Progesterone Receptor Coactivator Assay Kit
LanthaScreen™ TR-FRET Progesterone Receptor Coactivator Assay Kit

LanthaScreen™ TR-FRET Progesterone Receptor Coactivator Assay Kit

The LanthaScreen™ TR-FRET Progesterone Receptor Coactivator Assay Kitは、リガンド依存性コアクチベーターリクルートメントのアゴニストまたはアンタゴニストとして、潜在的なプロゲステロン受容体詳細を見る
製品番号(カタログ番号)数量
A15903800 x 20 μL assays
製品番号(カタログ番号) A15903
価格(JPY)
290,400
Each
お問い合わせください ›
数量:
800 x 20 μL assays
The LanthaScreen™ TR-FRET Progesterone Receptor Coactivator Assay Kitは、リガンド依存性コアクチベーターリクルートメントのアゴニストまたはアンタゴニストとして、潜在的なプロゲステロン受容体(PR)リガンドをハイスループットでスクリーニングするための高感度で堅牢な方法を提供します。このキットでは、グルタチオン-S-トランスフェラーゼ(GST)(別売り)、テルビウム(Tb)標識抗GST抗体、およびフルオレセイン標識コアクチベータペプチドでタグ付けされたPRリガンド結合ドメイン(PR-LBD)を均質なmix-and-readアッセイフォーマットで使用します。

アゴニストモード
LanthaScreen TR-FRET Progesterone Receptor Coactivator Assayをアゴニストモードで実行(アゴニスト化合物を同定)するには、PR-LBDをリガンド試験化合物に添加し、その後、フルオレセイン標識コアクチベータペプチドとTb標識抗GST抗体の混合物を添加します。室温でのインキュベーション後、520/495 nmのTR-FRET比が計算され、化合物の用量応答曲線からEC50を決定するために使用されます。このリガンドEC50は、PR-コアクチベーターペプチド相互作用の生物学的性質に基づき、受容体に結合し、構造変化を起こし、コアクチベーターペプチドをリクルートするのに必要なリガンドの量を表す複合値です(図を参照してください)。

アンタゴニストモード
LanthaScreen™ TR-FRET Progesterone Receptor Coactivator Assay Kitをアンタゴニストモードで実行(アンタゴニスト化合物を同定)する場合、PR-LBDをリガンド試験化合物に添加し、その後、アゴニスト、フルオレセイン標識-コアクチベーターペプチド、およびテルビウム標識抗-GST抗体の混合物を添加します(図を参照してください)。このモードで使用されるアゴニストの濃度は、最初にアゴニストモードでアッセイを実行することで決定されるEC80濃度です。
研究用途にのみご使用ください。診断目的には使用できません。
仕様
使用対象(アプリケーション)Co-Factor Interaction Assay, Nuclear Receptor Assay
製品ラインLanthaScreen
数量800 x 20 μL assays
タイプTR-FRET Progesterone Receptor Coactivator Assay Kit
Unit SizeEach
組成および保存条件
1チューブ PRリガンド結合ドメイン組み換えタンパク質(-68~-85℃で保存)
1チューブ ペプチド(-5~-30℃で保存)
2ボトル TR-FRETバッファー(-5~-30℃で保存)
1チューブ Tb-Anti-GST Ab(-5~-30℃で保存)
1チューブ DTT(-5~-30℃で保存)

よくあるご質問(FAQ)

How does the LanthaScreen technology compare to other TR-FRET assay formats?

We performed a comparison between the LanthaScreen assay and other commercially available TR-FRET assays from 2 different suppliers for the PKC kinase target. Our data revealed that the assays performed comparably, but that the LanthaScreen assay was simpler to optimize and contained fewer components that required optimization. The LanthaScreen assay is a two component system, whereas the other assay formats utilize a trimolecular mechanism which is more time consuming to optimize and has added costs.

For my kinase assay, can I pre-mix the Tb-Ab and EDTA so that I can stop the kinase assay and begin detection with a single reagent addition?

Yes, this is possible depending on the concentrations of reagents used and the time for which they are mixed. We recommend developing and optimizing the assay by using separate reagent additions, because this method will work under the widest range of conditions. Once the assay is optimized, the performance of the assay using pre-mixed antibody and EDTA can be evaluated. We have successfully developed robust assays in which the antibody and EDTA were pre-mixed and then stored overnight at 4 degrees C prior to use the following day. A loss of signal intensity was observed in this case, however, by using the ratiometric readout, this effect was minimal.

Are the LanthaScreen reagents stable to interference from Mg2+, Mn2+, and EDTA?

The chelate is completely stable to Mg2+. The amount of Mn2+ or EDTA that the chelate can tolerate depends largely on how long they are mixed together and the combination of additives used in the reaction. If a reaction requires either Mg2+ or Mn2+ for activation, it is best to stop the reaction by adding an equimolar amount (or slight excess) of EDTA to chelate the metal ions present. This will then essentially eliminate any interference on the terbium chelate by EDTA or Mn2+. Regardless, when LanthaScreen assays are performed using a ratiometric readout (division of the acceptor signal by the donor signal), any interference caused by Mn2+ or EDTA is largely cancelled out.

What is the optimal and/or maximum distance for a Tb-fluorescein pair?

The Förster radius, the distance at which energy transfer efficiency is half-maximal, is around 50-angstroms for the terbiumÆ fluorescein pair. However, the Förster radius does not give a complete indication of energy transfer efficiency when using long lifetime fluorophores such as terbium chelates. When using terbium chelates, energy transfer efficiency is determined by the distance of closest approach between the donor and acceptor during the excited state lifetime of the donor. In many assay systems, such as those designed using antibodies or peptides, there is a large degree of conformational freedom that allows the donor and acceptor to approach one another, effectively enhancing the FRET signal. Additionally, it is important to note that as the donor/acceptor pair approach one another and the efficiency of energy transfer increases, the fluorescent lifetime decreases to a comparable extent. From a practical standpoint, this means that when energy transfer is extremely efficient, FRET cannot be measured in time-resolved mode (because the energy transfer is complete before the measurement is made). This is another reason why TR-FRET assays based around terbium-labeled antibodies or streptavidin perform so well, because there exist a range of donor/acceptor distances, several of which are optimal for measuring FRET.

How many LanthaScreen assays can I run with a given amount of substrate?

It varies, depending on the concentration of substrate used in the assay. But in general, for the peptide substrates, 1 mg of peptide will run approximately 250,000 wells (10 µL reaction, 200 nM peptide). For Poly GT or GAT, the 1 mL of 30 µM size we sell is approximately 1 mg. With these substrates, 1 mL of 30 µM will run approximately 16,700 wells (10 µL reaction, 200 µM substrate).

20 nmol of our physiological protein substrates is sufficient for approximately 10,000 wells (10 µL reaction, 200 µM substrate).