ARES™ Alexa Fluor™ 647 DNA Labeling Kit
ARES™ Alexa Fluor™ 647 DNA Labeling Kit
Invitrogen™

ARES™ Alexa Fluor™ 647 DNA Labeling Kit

ARES™ Alexa Fluor™ DNA標識キットは、当社のAlexa Fluor™色素でDNAを標識するための多用途な2ステップの方法を提供します。最初のステップでは、従来の酵素標識法を用いてアミン修飾ヌクレオチドをDNAに組み込みます。2番目のステップでは、特許取得済みのアミン反応性Alexa詳細を見る
製品番号(カタログ番号)数量
A216761 kit
製品番号(カタログ番号) A21676
価格(JPY)
120,500
Each
お問い合わせください ›
数量:
1 kit
ARES™ Alexa Fluor™ DNA標識キットは、当社のAlexa Fluor™色素でDNAを標識するための多用途な2ステップの方法を提供します。最初のステップでは、従来の酵素標識法を用いてアミン修飾ヌクレオチドをDNAに組み込みます。2番目のステップでは、特許取得済みのアミン反応性Alexa Fluor™ 647色素を使用して、アミン修飾DNAを化学的に標識します。標識プローブは、蛍光in situハイブリダイゼーション(FISH)およびマイクロアレイ法に使用できます。ARES™ Alexa Fluor™ DNA標識キットは、5種類の蛍光色で提供され、各キットは1~5 µgのDNAの標識反応5~10回分に十分な試薬を提供します。

ARES™ Alexa Fluor™標識キットの仕様:
• 色素(Ex/Em):Alexa Fluor™ 647(650/670 nm)
• 標識ヌクレオチドの酵素的組み込み法よりも均一で一貫性のある標識を実現
• 通常、12~20塩基ごとに1つの色素を生成
• FISHおよびマイクロアレイに最適


ARES™標識キットでより均一な標識化
ARES™ Alexa Fluor™標識キットは、2ステップの標識技術、すなわちアミン修飾ヌクレオチド(アミノアリルdUTP)を酵素的に組み込むためのニックトランスレーションと、それに続くAlexa Fluor™色素による化学的標識を採用しています。この方法は、従来の標識ヌクレオチドの酵素的組み込みでは得ることが困難な標識の均一性と一貫性を実現します。
この2ステップの標識技術は、FISH Tag™DNAおよびFISH Tag™ RNAキットでも提供されています。これらのキットは、プローブ合成、標識化、精製用のすべての試薬と蛍光顕微鏡法でのシグナル保護に役立つ退色防止剤を含む、FISHアプリケーションのための完全なワークフローソリューションを提供します。

核酸標識のその他のオプション
核酸標識のさまざまなオプション(DNAおよびRNA FISHを含む)については、Molecular Probes™ハンドブックのオリゴヌクレオチドと核酸の標識化—セクション8.2を参照してください。

研究用途にのみ使用できます。ヒトまたは動物の治療もしくは診断用には使用できません。
研究用にのみ使用できます。診断用には使用いただけません。
仕様
標識または色素を含む
標識法間接ラベリング
製品ラインARES、Alexa Fluor
製品タイプDNA Labeling Kit
数量1 kit
出荷条件室温
検出法蛍光
最終産物タイププローブ(標識DNA)、cDNA(標識)
フォーマットキット
Labeling TargetDNA(一般)、cDNA
標識または色素Alexa Fluor™ 647
Unit SizeEach
組成および保存条件
フリーザー(-5∼-30度)に保存し、遮光してください。

よくあるご質問(FAQ)

My purified RNA comes from multiple sources, but I am getting variable efficiency of labeling with the same ARES kit. What can cause this?

Different preparations of RNA will certainly give different results. Most of the time, the mRNA is significantly degraded. The enzymatic incorporation of aminoallyl-dUTP (AA-dUTP) should not differ from reaction to reaction. If there are differences, it has to be due to the RNA or the method. AA-dUTP incorporation is no different than that of a dye-nucleotide conjugate, and should be more efficient and uniform. Here are a couple of suggestions:

1) cDNA may have been lost prior to labeling. Add 1 µL of glycogen (molecular biology grade), containing 10-20 µg, to the cDNA before precipitating it with ethanol.

2) Make sure to add sodium acetate as the salt and not ammonium acetate. After pelleting the cDNA, resuspend it in 5 µL water.

3) If generating long cDNAs, it will help to heat-denature the sample. Heat it at 95°C for 5 minutes and then put it on ice for a few minutes. Then centrifuge it for a few minutes just prior to the labeling reaction.

4) You want the tube to be at room temperature for the labeling reaction. Add the 3 µL of buffer and mix it in. Then add the dye and vortex it vigorously for at least 15 seconds.

Could you make an ARES Alexa Fluor 633 DNA Labeling Kit? This would be a good fit with my 633 nm laser.

Unfortunately, Alexa Fluor 633 does not label nucleic acids well because of the dye's chemical structure. Furthermore, DNA probes labeled with Alexa Fluor 633 do not form stable hybrids in nucleic acid hybridization assays.

How stable is the ARES-labeled DNA to high temperature?

An ARES-labeled oligonucleotide should survive at 95°C for 5 minutes.

Can probes labeled using the ARES Alexa Fluor DNA Labeling Kits be stored for later use?

Long-term storage for the ARES-labeled probes can be done in just about any kind of buffer, TE, formamide, hybridization buffer, or ethanol. We suggest using your normal storage conditions as long as you protect the probes from light. ARES conjugates are very stable.

How do the Alexa Fluor dyes used in the ARES Alexa Fluor DNA Labeling Kits compare to Cy dyes for fluorescence intensity at different labeling ratios?

At the same dye-to-base ratio, Alexa Fluor dyes exhibit higher intensity and reduced self-quenching at higher labeling ratios.

引用および参考文献 (9)

引用および参考文献
Abstract
Induction of Id1 and Id3 by latent membrane protein 1 of Epstein-Barr virus and regulation of p27/Kip and cyclin-dependent kinase 2 in rodent fibroblast transformation.
Authors:Everly DN, Mainou BA, Raab-Traub N
Journal:J Virol
PubMed ID:15564458
Latent membrane protein 1 (LMP1), the Epstein-Barr virus oncoprotein, activates NF-kappaB, phosphatidylinositol 3-kinase, mitogen-activated protein kinase, and c-Jun N-terminal kinase signaling. To determine global transcriptional changes induced by LMP1 in epithelial cells, genomic analysis of C33A cells stably expressing LMP1 was performed. Relatively few genes were induced by LMP1. Expression ... More
Effects of rottlerin on silica-exacerbated systemic autoimmune disease in New Zealand mixed mice.
Authors:Brown JM, Schwanke CM, Pershouse MA, Pfau JC, Holian A,
Journal:Am J Physiol Lung Cell Mol Physiol
PubMed ID:16040631
'Environmental crystalline silica exposure has been associated with formation of autoantibodies and development of systemic autoimmune disease, but the mechanisms leading to these events are unknown. Silica exposure in autoimmune-prone New Zealand mixed (NZM) mice results in a significant exacerbation of systemic autoimmunity as measured by increases in autoantibodies and ... More
Development of microarray and multiplex polymerase chain reaction assays for identification of serovars and virulence genes in Salmonella enterica of human or animal origin.
Authors:Peterson G, Gerdes B, Berges J, Nagaraja TG, Frye JG, Boyle DS, Narayanan S,
Journal:J Vet Diagn Invest
PubMed ID:20622226
'Salmonella enterica is an important enteric pathogen consisting of many serovars that can cause severe clinical diseases in animals and humans. Rapid identification of Salmonella isolates is especially important for epidemiologic monitoring and controlling outbreaks of disease. Although immunologic and DNA-based serovar identification methods are available for rapid identification of ... More
Specific discrimination of three pathogenic Salmonella enterica subsp. enterica serotypes by carB-based oligonucleotide microarray.
Authors:Shin HH, Hwang BH, Seo JH, Cha HJ,
Journal:
PubMed ID:24185846
'It is important to rapidly and selectively detect and analyze pathogenic Salmonella enterica subsp. enterica in contaminated food to reduce the morbidity and mortality of Salmonella infection and to guarantee food safety. In the present work, we developed an oligonucleotide microarray containing duplicate specific capture probes based on the carB ... More
Multiplex detection of RNA expression in Drosophila embryos.
Authors:Kosman D, Mizutani CM, Lemons D, Cox WG, McGinnis W, Bier E
Journal:Science
PubMed ID:15297669
We present a fluorescence-based, multiplex in situ hybridization method that permits the simultaneous detection of five differently labeled antisense RNA probes and up to seven differ-ent transcripts in a single Drosophila embryo. We also show that it should be possible to increase the number of detected transcripts substantially with nascent ... More