GeneArt™ Genomic Cleavage Detection Kit
GeneArt™ Genomic Cleavage Detection Kit
Invitrogen™

GeneArt™ Genomic Cleavage Detection Kit

GeneArtゲノム開裂検出キットは、高速のT7エンドヌクレアーゼIベースのメソッドで、使用中のゲノム編集プロトコルが細胞株のゲノムに挿入および欠失(インデル)をどの程度引き起こしているかを定量します。これは、実施中の細胞工学実験に最適なCRISPR-Cas9 gRNA、または最良のTALエフェクターヌクレアーゼを定量および検証する最も迅速な方法です。GeneArtゲノム開裂検出キットは詳細を見る
製品番号(カタログ番号)数量
A2437220 reactions
製品番号(カタログ番号) A24372
価格(JPY)
70,000
Each
お問い合わせください ›
数量:
20 reactions
GeneArtゲノム開裂検出キットは、高速のT7エンドヌクレアーゼIベースのメソッドで、使用中のゲノム編集プロトコルが細胞株のゲノムに挿入および欠失(インデル)をどの程度引き起こしているかを定量します。これは、実施中の細胞工学実験に最適なCRISPR-Cas9 gRNA、または最良のTALエフェクターヌクレアーゼを定量および検証する最も迅速な方法です。GeneArtゲノム開裂検出キットは、使いやすく迅速かつ完全なソリューションを提供します。

このT7エンドヌクレアーゼ I(T7EI)ベースのメソッドを使用すると、非相同末端結合(NHEJ)活性によって得られる、ターゲット上のゲノム編集効率を迅速かつ確実に測定できます。GeneArtゲノム開裂検出キットの利点は以下のとおりです。

最小限の操作時間 — PCR は細胞ライセートから増幅するのでDNA精製は不要
短いプロトコル — 細胞回収から定量結果まで4時間
PCRプライマーを加えるだけ — 必要なすべてがワンボックスで可能。個別のPCRマスターミックスやDNA抽出キットは購入する必要がありません。
ゲルから直接編集効率を定量 — ゲルバンド密度は直接ターゲットのインデル形成と相関しています

シーケンス結果を待つことなく、また複雑なシーケンシング解析を行うことなく、結果を同日中に得ることができます。
研究用途にのみご使用ください。診断目的には使用できません。
仕様
フォーマットキット
反応数20反応
ポリメラーゼTaqポリメラーゼ
製品タイプゲノム切断検出キット
数量20 reactions
認識部位インデル
対応可能対象20反応
技術CRISPR-Cas9, TAL Effector Nuclease
検出法PCR
形状液体
反応速度高速
Unit SizeEach
組成および保存条件
内容:

•1ボトル、細胞溶解バッファー
• 1チューブ、プロテイナーゼK
• 1チューブ、PCRスーパーミックス
• 1チューブ、水
• 1チューブ、T7E1検出酵素
• 1チューブ、T7E1検出反応バッファー
• 1チューブ、コントロールテンプレートおよびプライマー

すべて-5~-30℃で保存してください。

よくあるご質問(FAQ)

What are TALs or TALENS?

TALs or TALENs are transcription activator-like effector nuclease proteins that are naturally occurring transcriptional activators secreted by Xanthomonas spp. into their plant hosts. GeneArt TALs are derived from Xathomonas TAL effectors, the DNA-binding domain of which consists of a variable number of amino acid repeats. Each repeat contains 33–35 amino acids and recognizes a single DNA base pair. The DNA recognition occurs via 2 hypervariable amino acid residues at positions 12 and 13 within each repeat, called repeat-variable di-residues (RVDs). TAL effector repeats can be assembled in modular fashion, varying the RVDs to create a TAL protein that recognizes a specific target DNA sequence.

What is CRISPR-STOP?

CRISPR-STOP is a method of inserting STOP codon sequences to generate knockouts.

Please refer to the following article: CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations.

Find additional tips, troubleshooting help, and resources within our Genome Editing Support Center.

I am working with TALs and want to incorporate an effector domain that you do not carry. What should I do?

We do offer a multiple cloning site sequence in the place of the effector domain sequence for our TAL MCS entry vector. This option allows you to insert any protein-coding sequence, and allows your resulting TAL protein to deliver the effector in a sequence-specific manner anywhere in the genome. We also provide gene synthesis services to generate any effector domain for which you don't have a template.

I am trying to design my TAL but do not have a T at the 5´ end of the TAL effector. What should I do?

While our Invitrogen GeneArt Precision TALs required a T at the 5´end and 13-18 bp spacing between the forward and reverse TAL effectors for proper pairing of Fok1 nucleases, the Invitrogen GeneArt PerfectMatch TALs allow for targeting of any sequence across the genome and eliminates the 5´ T constraints. Additionally, the spacing between the two effectors is optimal at 15-16 bp.

The binding domain for TALs can be either 19 or 25 bp in length. Does one work better than the other?

The 19 bp binding domains perform better for the nucleases. The binding sites do not need to be the same size; however, best performance for the nucleases is with the 19 bp binding domains.

引用および参考文献 (7)

引用および参考文献
Abstract
CRISPR/Cas9-Mediated Genomic Deletion of the Beta-1, 4 N-acetylgalactosaminyltransferase 1 Gene in Murine P19 Embryonal Carcinoma Cells Results in Low Sensitivity to Botulinum Neurotoxin Type C.
Authors:Tsukamoto K, Ozeki C, Kohda T, Tsuji T,
Journal:
PubMed ID:26177297
'Botulinum neurotoxins produced by Clostridium botulinum cause flaccid paralysis by inhibiting neurotransmitter release at peripheral nerve terminals. Previously, we found that neurons derived from the murine P19 embryonal carcinoma cell line exhibited high sensitivity to botulinum neurotoxin type C. In order to prove the utility of P19 cells for the ... More
Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection.
Authors:Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S, Ravinder N, Chesnut JD,
Journal:
PubMed ID:26003884
'CRISPR-Cas9 systems provide a platform for high efficiency genome editing that are enabling innovative applications of mammalian cell engineering. However, the delivery of Cas9 and synthesis of guide RNA (gRNA) remain as steps that can limit overall efficiency and ease of use. Here we describe methods for rapid synthesis of ... More
Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system.
Authors:Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T,
Journal:
PubMed ID:24954249
CRISPR/Cas9-mediated genome editing is a next-generation strategy for genetic modifications, not only for single gene targeting, but also for multiple targeted mutagenesis. To make the most of the multiplexity of CRISPR/Cas9, we established a system for constructing all-in-one expression vectors containing multiple guide RNA expression cassettes and a Cas9 nuclease/nickase ... More
Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA.
Authors:Liang X, Potter J, Kumar S, Ravinder N, Chesnut JD
Journal:J Biotechnol
PubMed ID:27845164
'While CRISPR-based gene knock out in mammalian cells has proven to be very efficient, precise insertion of genetic elements via the cellular homology directed repair (HDR) pathway remains a rate-limiting step to seamless genome editing. Under the conditions described here, we achieved up to 56% targeted integration efficiency with up ... More
Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX.
Authors:Yu X, Liang X, Xie H, Kumar S, Ravinder N, Potter J, de Mollerat du Jeu X, Chesnut JD,
Journal:Biotechnol Lett
PubMed ID:26892225
'To identify the best lipid nanoparticles for delivery of purified Cas9 protein and gRNA complexes (Cas9 RNPs) into mammalian cells and to establish the optimal conditions for transfection. Using a systematic approach, we screened 60 transfection reagents using six commonly-used mammalian cell lines and identified a novel transfection reagent (named ... More