Pierce™ Anti-DYKDDDDK Magnetic Agarose
Pierce™ Anti-DYKDDDDK Magnetic Agarose
Thermo Scientific™

Pierce™ Anti-DYKDDDDK Magnetic Agarose

Thermo Scientific Pierce Anti-DYKDDDDK Magnetic Agaroseは、in vitroタンパク質発現系、細菌、酵母詳細を見る
製品番号(カタログ番号)数量
A367974 mL
A3679820 mL
製品番号(カタログ番号) A36797
価格(JPY)
85,400
Each
お問い合わせください ›
数量:
4 mL
Thermo Scientific Pierce Anti-DYKDDDDK Magnetic Agaroseは、in vitroタンパク質発現系、細菌、酵母、および哺乳類細胞からDYKDDDDKタグ付きタンパク質を精製および免疫沈降(IP)するための迅速かつ便利な方法を提供します。アミノ酸配列DYKDDDDKは、一般的に「FLAG」として知られ、マグネタイトに埋め込まれたアガロースコア粒子に共有結合した高親和性ラットモノクローナル抗体(クローンL5)によって認識されます。

タンパク質精製では、N末端またはC末端にDYKDDDDKタグを有するタンパク質含有サンプルに磁気アガロースを添加します。捕捉したタンパク質は上清から磁気的に分離され、結合したDYKDDDDKタグ付きタンパク質を溶出バッファーで解離させる前に、非特異的に結合したタンパク質を洗浄除去できます。磁気アガロースは、磁気スタンド、またはKingFisher Flex磁気粒子プロセッサーなどの装置を使用して溶液から除去します。自動装置は、スループットがより高い精製や精製条件のスクリーニングに特に有用です。

特長:
特異的—独自のベースビーズと特異性の高い抗体は、オフターゲット結合を最小限に抑制(低い非特異的結合)
高純度—最適化された結合-洗浄-溶出プロトコルは高純度を実現
高収量—特殊な抗体結合法は高収量を実現
高速—全精製プロトコルは通常40分以内に完了
経済的—精製プロトコルは複数回の再使用を実現
汎用—ビーズは手動および自動ワークフロー(KingFisher装置など)に対応

Pierce Anti-DYKDDDDK Magnetic Agaroseの特性:

組成:高度クロスリンク磁気アガロース担体に磁気的に共有結合した抗DYKDDDDK抗体
磁化:残留磁気が少ないフェリ磁性
ビーズサイズ:10~40 µm
ビーズ濃度:リン酸緩衝生理食塩水、0.01% Tween-20界面活性剤、0.02%アジ化ナトリウム中の25%スラリー、pH 7.2
結合能:≧ 3.2 mg DYKDDDDK-tGFP-Hisタンパク質(約32 kDa)/mL安定化ビーズ

研究用途にのみご使用ください。診断目的には使用できません。
仕様
ベッド容量1 mL
容量4 mL
形状液体
フォーマット液体
組成Slurry: 25%
粒子径25 to 30 μm
製品ラインPierce
製品タイプ磁気アガロース
数量4 mL
出荷条件湿氷
固定相抗-DYKDDDDKモノクローナル抗体
MatrixMagnetic Agarose
Unit SizeEach
組成および保存条件
1 mLの安定化ビーズ。0.02%のアジ化ナトリウムを含有するPBS中の25%懸濁液4 mLとして提供。

2~8℃で保存。

よくあるご質問(FAQ)

How does Pierce Anti-DYKDDDDK Magnetic Agarose (Cat. No. A36797, A36798) work for purification of DYKDDDK-tagged recombinant proteins?

The amino acid sequence DYKDDDDK, commonly known as the ''Flag'' epitope group, is recognized by a high-affinity rat monoclonal antibody (clone L5) that is covalently attached to a magnetite-embedded agarose core particle.

For protein purification, the magnetic agarose is added to a sample containing DYKDDDDK-tagged proteins with the tag on either the N- or the C-terminus. Captured proteins are then magnetically separated from the supernatant, and non-specifically bound proteins can be washed away before dissociating bound DYKDDDDK-tagged proteins with elution buffer. The magnetic agarose is removed from the solution using a magnetic stand or an instrument such as the KingFisher Flex Magnetic Particle Processor. Automated instruments are especially useful for higher-throughput purifications and screening of purification conditions.

Find additional tips, troubleshooting help, and resources within our Protein Purification and Isolation Support Center.

What is the slurry/suspension percentage for your anti-DYKDDDDK ("FLAG") products?

Anti-DYKDDDDK Magnetic Agarose (Cat. Nos. A36797, A36798, A36799B) is offered as a 25% suspension (1 mL of 25% suspension = 0.25 mL of settled beads). UltraLink-based Anti-DYKDDDDK Affinity Resin (Cat. Nos, A36801, A36803, A36804) is offered as a 50% slurry (1 mL of 50% slurry = 0.5 mL of settled resin).

Find additional tips, troubleshooting help, and resources within our Protein Purification and Isolation Support Center.

What is the binding capacity for your Anti-DYKDDDDH Magnetic Agarose?

Here is the binding capacity: ≥3.2 mg DYKDDDDK-tGFP-His protein (˜32kDa)/mL settled beads.

Find additional tips, troubleshooting help, and resources within our Protein Purification and Isolation Support Center.

How do I cleave off the DYKDDDDK ("FLAG") tag after purification?

An enterokinase cleavage site behind the DYKDDDDK (“FLAG”) tag can allow complete removal of the DYKDDDDK (“FLAG”) tag leaving no additional amino acids. We offer EKMax Enterokinase (Cat. Nos. E18001 and E18002) that can be used for this purpose. Subsequently, the EKMax Enterokinase can be removed using EK-Away Resin (Cat. No. R18001), a resin conjugated with soybean trypsin inhibitor, which has high affinity for enterokinase.

Find additional tips, troubleshooting help, and resources within our Protein Purification and Isolation Support Center.

引用および参考文献 (8)

引用および参考文献
Abstract
NUMA1 modulates apoptosis of esophageal squamous cell carcinoma cells through regulating ASK1-JNK signaling pathway.
Authors:Yin S,Zhao S,Li J,Liu K,Ma X,Zhang Z,Wang R,Tian J,Liu F,Song Y,Song M,Zhao R,Yang R,Lee MH,Dong Z
Journal:Cellular and molecular life sciences : CMLS
PubMed ID:37462735
Esophageal squamous cell carcinoma (ESCC) is a common malignancy worldwide with a low survival rate due to a lack of therapeutic targets. Here, our results showed that nuclear mitotic apparatus protein 1 (NUMA1) transcript and protein levels are significantly upregulated in ESCC patient samples and its high expression predicated poor ... More
A protein complex of LCN2, LOXL2 and MMP9 facilitates tumour metastasis in oesophageal cancer.
Authors:Xia Q,Du Z,Chen M,Zhou X,Bai W,Zheng X,Lin L,Zhao Y,Ding J,Wu Z,Zou H,Wang S,Xu L,Li E,Wu B
Journal:Molecular oncology
PubMed ID:37753805
During malignant tumour development, the extracellular matrix (ECM) is usually abnormally regulated. Dysregulated expression of lysyl oxidase-like 2 (LOXL2), matrix metalloproteinase 9 (MMP9) and lipocalin 2 (LCN2) are associated with ECM remodelling. In this study, protein-protein interaction assays indicated that LCN2 and LOXL2 interactions and LCN2 and MMP9 interactions occurred ... More
RUFY3 and RUFY4 are ARL8 effectors that promote coupling of endolysosomes to dynein-dynactin.
Authors:Keren-Kaplan T,Sarić A,Ghosh S,Williamson CD,Jia R,Li Y,Bonifacino JS
Journal:Nature communications
PubMed ID:35314674
The small GTPase ARL8 associates with endolysosomes, leading to the recruitment of several effectors that couple endolysosomes to kinesins for anterograde transport along microtubules, and to tethering factors for eventual fusion with other organelles. Herein we report the identification of the RUN- and FYVE-domain-containing proteins RUFY3 and RUFY4 as ARL8 ... More
Immunoprecipitation Strategies to Isolate RIPK1/RIPK3 Complexes in Mouse Macrophages
Authors:Siokas I, Zhang D, Poltorak A, Muendlein H, Degterev A
Journal:Curr Protoc.
PubMed ID:
Helicase-inactivating BRIP1 mutation yields Fanconi anemia with microcephaly and other congenital abnormalities
Authors:Kamal L, Pierce SB, Canavati C, Rayyan AA, Jaraysa T, Lobel O, Lolas S, Norquist BM, Rabie G, Zahdeh F, Levy-Lahad E, King M-C, Kanaan, MN
Journal:Cold Spring Harb Mol Case Stud
PubMed ID: