BacLight™ RedoxSensor™ CTC Vitality Kit
<i>Bac</i>Light&trade; RedoxSensor&trade; CTC Vitality Kit
Invitrogen™

BacLight™ RedoxSensor™ CTC Vitality Kit

BacLight™ RedoxSensor™ CTCバイタリティキットは、固定手順に耐える細菌細胞の健全性と活性を評価するための効果的な試薬を提供します。簡単に言えば、電子輸送チェーンを介して再呼吸する正常な細胞はCTCを吸収し、不溶性の赤色蛍光ホルマリン製品に減らします。より遅い速度で再呼吸または再呼吸を行わない細胞はCTCを低減し、その結果、蛍光生成が減少し詳細を見る
製品番号(カタログ番号)数量
B349561 Kit
製品番号(カタログ番号) B34956
価格(JPY)
76,800
Each
お問い合わせください ›
数量:
1 Kit
BacLight™ RedoxSensor™ CTCバイタリティキットは、固定手順に耐える細菌細胞の健全性と活性を評価するための効果的な試薬を提供します。簡単に言えば、電子輸送チェーンを介して再呼吸する正常な細胞はCTCを吸収し、不溶性の赤色蛍光ホルマリン製品に減らします。より遅い速度で再呼吸または再呼吸を行わない細胞はCTCを低減し、その結果、蛍光生成が減少し、健康細菌と不健康細菌の半定量的推定が得られます。緑色および青色蛍光の核酸染色は対比染色として含まれており、細胞を破片から識別し、総細胞数を計算するのに役立ちます。

フローサイトメトリー用のすべての微生物学アッセイに関する追加情報を表示します。
研究用途にのみご使用ください。診断目的には使用できません。
仕様
細胞タイプ細菌
検出法蛍光
染色剤タイプその他の標識または色素
フォーマットチューブ、スライド
数量1 Kit
出荷条件室温
溶解性DMSO(ジメチルスルホキシド)
EmissionUV、488
使用対象 (装置)蛍光顕微鏡, フローサイトメーター
製品ラインBacLight、RedoxSensor
製品タイプCTC Vitality Kit
Unit SizeEach
組成および保存条件
塩化5-シアノ-2,3-ジドリルテトラゾリウム(CTC、1バイアルあたり15 mg)のバイアル5本、SYTO™ 24グリーン(DMSO中100 µL)mのバイアル1本、およびDAPI(100 µL、5 mg/mL水溶液)が含まれます。 フリーザー(-5℃~-30℃)に保存し、遮光してください

よくあるご質問(FAQ)

What bacterial parameters can I look at by flow cytometry?

You can stain bacteria with a general stain such as BacLight Green Bacterial Stain (Cat. No. B35000) or BacLight Red Bacterial Stain (Cat. No. B35001). You can look at gram character (Cat. No. L7005), cell viability (Cat. Nos. L7007, L7012, and L13152), cell count (Cat. Nos. L34856 and B7277), and cell vitality. Cell vitality can be measured by membrane potential (Cat. No. B34950) or by metabolism (Cat. Nos. B34954 and B34956).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

引用および参考文献 (6)

引用および参考文献
Abstract
Flow cytometric analysis of 5-cyano-2,3-ditolyl tetrazolium chloride activity of marine bacterioplankton in dilution cultures.
Authors:Sieracki ME, Cucci TL, Nicinski J,
Journal:Appl Environ Microbiol
PubMed ID:10347021
'The respiratory activity of marine bacteria is an important indication of the ecological functioning of these organisms in marine ecosystems. The redox dye 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) is reduced intracellularly in respiring cells to an insoluble, fluorescent precipitate. This product is detectable and quantifiable by flow cytometry in individual cells. ... More
Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm.
Authors:Kim J, Pitts B, Stewart PS, Camper A, Yoon J,
Journal:Antimicrob Agents Chemother
PubMed ID:18195062
'The systematic understanding of how various antimicrobial agents are involved in controlling biofilms is essential in order to establish an effective strategy for biofilm control, since many antimicrobial agents are effective against planktonic cells but are ineffective when they are used against the same bacteria growing in a biofilm state. ... More
Characterization of osmotically induced filaments of Salmonella enterica.
Authors:Pratt ZL, Chen B, Czuprynski CJ, Wong AC, Kaspar CW,
Journal:Appl Environ Microbiol
PubMed ID:22798362
'Salmonella enterica forms aseptate filaments with multiple nucleoids when cultured in hyperosmotic conditions. These osmotic-induced filaments are viable and form single colonies on agar plates even though they contain multiple genomes and have the potential to divide into multiple daughter cells. Introducing filaments that are formed during osmotic stress into ... More
Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion.
Authors:Kim JY, Park HJ, Lee C, Nelson KL, Sedlak DL, Yoon J,
Journal:Appl Environ Microbiol
PubMed ID:20870787
'The mechanism of Escherichia coli inactivation by nanoparticulate zerovalent iron (nZVI) and Fe(II) was investigated using reactive oxygen species (ROS) quenchers and probes, an oxidative stress assay, and microscopic observations. Disruption of cell membrane integrity and respiratory activity was observed under deaerated conditions [more disruption by nZVI than Fe(II)], and ... More
How the insect immune system interacts with an obligate symbiotic bacterium.
Authors:Douglas AE, Bouvaine S, Russell RR,
Journal:Proc Biol Sci
PubMed ID:20719775
The animal immune system provides defence against microbial infection, and the evolution of certain animal-microbial symbioses is predicted to involve adaptive changes in the host immune system to accommodate the microbial partner. For example, the reduced humoral immune system in the pea aphid Acyrthosiphon pisum, including an apparently non-functional immune ... More