ChromaTide™ Alexa Fluor™ 488-5-UTP
ChromaTide™ Alexa Fluor™ 488-5-UTP
Invitrogen™

ChromaTide™ Alexa Fluor™ 488-5-UTP

Molecular Probes™ ChromaTide™色素標識dUTP、OBEA-dCTP、およびUTPヌクレオチドは、有害で高価な放射性同位体標識ヌクレオチドを必要とせずに、標識DNAプローブを合成するために使用できます。これらのヌクレオチドは、標準的な分子生物学テクノロジーを使用して組み込むことができます。標識プローブはその後詳細を見る
製品番号(カタログ番号)数量
C1140325 μL
製品番号(カタログ番号) C11403
価格(JPY)
131,000
Each
お問い合わせください ›
数量:
25 μL
Molecular Probes™ ChromaTide™色素標識dUTP、OBEA-dCTP、およびUTPヌクレオチドは、有害で高価な放射性同位体標識ヌクレオチドを必要とせずに、標識DNAプローブを合成するために使用できます。これらのヌクレオチドは、標準的な分子生物学テクノロジーを使用して組み込むことができます。標識プローブはその後、in situハイブリダイゼーション、マイクロアレイ、またはブロッティングプロトコルに使用できます。ChromaTide™色素標識ヌクレオチドは、さまざまな蛍光色で提供されており、マルチカラー分析を容易にします。

ChromaTide™標識ヌクレオチドの仕様:
•色素の励起/発光:Alexa Fluor™ 488-5-UTP(490/520 nm)
• アルキルアミノリンカーの長さ:5つの原子


ChromaTideヌクレオチドをプローブに組み込む方法
• ニックトランスレーション
• ランダムプライマー標識化
• 末端デオキシヌクレオチド転移酵素による末端の標識化
• 逆転写酵素
• PCR増幅


これらの各方法に固有のガイドラインについては、ChromaTide™ dUTPの酵素的組み込み法を参照してください。

Alexa Fluor™およびBODIPY™蛍光色素が高度なプローブを実現
標識ヌクレオチドで作成されたプローブは、in situハイブリダイゼーションやアレイへのハイブリダイゼーションなどのマルチカラーテクノロジーに使用できます。当社独自のBODIPY™およびAlexa Fluor™色素コンジュゲートは、非常に明るく、光安定性が高く、本質的にpHに影響しません。BODIPY™色素の狭い発光プロファイルは、スペクトルのオーバーラップを最小限に抑えます。Alexa Fluor™色素は、これらから作成されるDNAプローブと同様に水溶性が高く、蛍光in situハイブリダイゼーションに最適な標識です。

長いリンカーにより性能が向上
ChromaTide™ dUTPおよびUTPヌクレオチドは、独自のアルキルアミノリンカーを介して、ウリジンのC-5位置で修飾されます。これによって、ヌクレオチドと色素の間にスペーサーが提供され、それらの相互作用が低減します。製品名の数字(例えば、fluorescein-12-dUTPの“12”)は、原子におけるスペーサーの正味長を示します。これらのスペーサーにより、二次検出試薬のコンジュゲートが明るくなり、ハプテンへのアクセス性が向上します。

当社のChromaTide™試薬の完全なリストについては、以下をご覧ください。Molecular Probes ChromaTide™およびAHA標識ヌクレオチド—表8.5
これらの標識試薬の詳細については、Molecular Probes™ハンドブックのオリゴヌクレオチドと核酸の標識化—セクション 8.2を参照してください。

研究用途にのみご使用ください。ヒトまたは動物の治療もしくは診断用には使用できません。
研究用にのみ使用できます。診断用には使用いただけません。
仕様
標識法直接標識
標識または色素Alexa Fluor™ 488
数量25 μL
出荷条件ドライアイス
濃度1 mM
製品ラインAlexa Fluor、ChromaTide, ChromaTide
Unit SizeEach
組成および保存条件
フリーザー(-5∼-30度)に保存し、遮光してください。

よくあるご質問(FAQ)

I'm getting high background after labeling with ChromaTide nucleotides. What do you recommend I do?

You can try to purify the ChromaTide labeled probe with an appropriate spin column-based method to remove unincorporated ChromaTide nucleotides. Ethanol precipitation may not efficiently remove the unincorporated ChromaTide nucleotides, so a spin column will need to be used.

The nucleic acid probe is not fluorescent after labeling with ChromaTide nucleotides. What do you recommend I try?

- Check the base-to-dye ratio to determine the level of incorporation of the ChromaTide nucleotides. Since fluorescent detection may be affected by underlabeling, overlabeling, instrument sensitivity, or other factors, the base-to-dye ratio is a better indicator of incorporation efficiency.
- ChromaTide nucleotides may not have been incorporated well in the enzymatic labeling reaction. Make sure that the enzymatic method used is compatible with the particular fluorescent ChromaTide nucleotide, since some methods may not be appropriate for all applications. You may also need to further optimize the enzymatic incorporation method, for example by optimizing enzyme concentration, incubation time, concentration, and ratio of labeled and unlabeled nucleotides. For PCR, a lower fidelity polymerase may give higher incorporation rates; however, incorporation rates will be generally low using PCR.
- Check the fluorescent filter used for detection to make sure it is compatible with the dye. You can also test a small drop of the undiluted fluorescent ChromaTide nucleotide in your filter to make sure you can image the dye alone before it is conjugated to the oligonucleotide. The fluorescence emission of Alexa Fluor 647 is not visible by eye and will require a far-red imaging system for detection.

Can ChromaTide nucleotides be used for labeling nucleic acids in live cells?

No, they are not cell permeant so they are only suitable for in vitro incorporation methods. The fluorescent dyes and phosphate groups are too highly charged to allow the nucleotides to penetrate the membrane of an intact cell. Nonfluorescent nucleosides without phosphates such as EdU, EU, or BrdU can be used for live cell nucleic acid incorporation studies.

How do I determine the incorporation efficiency of the ChromaTide Labeling Nucleotides after enzymatic incorporation?

The base-to-dye ratio is determined by measuring the absorbance of the nucleic acid at 260 nm and the absorbance of the dye at its absorbance maximum. Using the extinction coefficients for the appropriate dye and nucleic acid, you can then calculate the base-to-dye ratio for the labeled nucleic acid using the Beer-Lambert law. Detailed instructions can be found in these product manuals: (http://tools.thermofisher.com/content/sfs/manuals/td07604.pdf, http://tools.thermofisher.com/content/sfs/manuals/td07605.pdf).

What is the average dye to base incorporation rate when enzymatically incorporating ChromaTide nucleotides?

The average incorporation is one dye for every 100-150 bases, so the ChromaTide fluorescently labeled nucleotides typically produce the lowest labeling rates of the nucleic acid labeling methods we offer.

引用および参考文献 (6)

引用および参考文献
Abstract
A brain-specific microRNA regulates dendritic spine development.
Authors:Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME
Journal:Nature
PubMed ID:16421561
'MicroRNAs are small, non-coding RNAs that control the translation of target messenger RNAs, thereby regulating critical aspects of plant and animal development. In the mammalian nervous system, the spatiotemporal control of mRNA translation has an important role in synaptic development and plasticity. Although a number of microRNAs have been isolated ... More
Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos.
Authors:Huynh KD, Lee JT
Journal:Nature
PubMed ID:14661031
'In mammals, dosage compensation ensures equal X-chromosome expression between males (XY) and females (XX) by transcriptionally silencing one X chromosome in XX embryos. In the prevailing view, the XX zygote inherits two active X chromosomes, one each from the mother and father, and X inactivation does not occur until after ... More
Genome-wide analysis demonstrates conserved localization of messenger RNAs to mitotic microtubules.
Authors:Blower MD, Feric E, Weis K, Heald R,
Journal:J Cell Biol
PubMed ID:18166649
RNA localization is of critical importance in many fundamental cell biological and developmental processes by regulating the spatial control of gene expression. To investigate how spindle-localized RNAs might influence mitosis, we comprehensively surveyed all messenger RNAs (mRNAs) that bound to microtubules during metaphase in both Xenopus laevis egg extracts and ... More
Single-molecule analysis of 1D diffusion and transcription elongation of T7 RNA polymerase along individual stretched DNA molecules.
Authors:Kim JH, Larson RG,
Journal:Nucleic Acids Res
PubMed ID:17526520
Using total internal reflection fluorescence microscopy, we directly visualize in real-time, the 1D Brownian motion and transcription elongation of T7 RNA polymerase along aligned DNA molecules bound to substrates by molecular combing. We fluorescently label T7 RNA polymerase with antibodies and use flow to convect them orthogonally to the DNA ... More
Drosophila Squid/hnRNP helps Dynein switch from a gurken mRNA transport motor to an ultrastructural static anchor in sponge bodies.
Authors:Delanoue R, Herpers B, Soetaert J, Davis I, Rabouille C,
Journal:Dev Cell
PubMed ID:17925228
In Drosophila oocytes, dorso-anterior transport of gurken mRNA requires both the Dynein motor and the heterogeneous nuclear ribonucleoprotein (hnRNP) Squid. We show that gurken transcripts are transported directly on microtubules by Dynein in nonmembranous electron-dense transport particles that also contain Squid and the transport cofactors Egalitarian and Bicaudal-D. At its ... More