One Shot™ BL21 Star™ (DE3) Chemically Competent E. coli
One Shot&trade; BL21 Star&trade; (DE3) Chemically Competent <i>E. coli</i>
Invitrogen™

One Shot™ BL21 Star™ (DE3) Chemically Competent E. coli

One Shot™ BL21 Star™(DE3)ケミカルコンピテント大腸菌は、低コピー数のT7プロモーターベース発現システム(例:Champion™ pETベクター)からの非毒性組換えタンパク質の高レベル発現を必要とする用途用に設計されています詳細を見る
製品番号(カタログ番号)数量
C60100321 x 50 μL/tube
製品番号(カタログ番号) C601003
価格(JPY)
91,000
Each
お問い合わせください ›
数量:
21 x 50 μL/tube
One Shot™ BL21 Star™(DE3)ケミカルコンピテント大腸菌は、低コピー数のT7プロモーターベース発現システム(例:Champion™ pETベクター)からの非毒性組換えタンパク質の高レベル発現を必要とする用途用に設計されています。One Shot™ BL21 Star™(DE3)ケミカルコンピテントセルは、形質転換効率1 x 108 cfu/μgプラスミドDNAで提供されます。One Shot™ BL21 Star™細胞の特長:

•mRNA安定性とタンパク質収量を高める遺伝子型が含まれています。
•低コピー数の、T7プロモーターベースプラスミドでの使用のために最適化されています。
•シングルチューブ—シングルユースフォーマットで提供されているため、すべての形質転換ステップを同じチューブ内で行うことができ、時間を節約して汚染を防止できます。

毒性のない組み換えタンパク質の発現を強化。
One Shot™ BL21 Star™(DE3)細胞には、lacUV5プロモーターの制御下でT7 RNAポリメラーゼの遺伝子を運ぶDE3ライセジェンが含まれています。発現を誘導するにはIPTGが必要です。この菌株はまた、内因性RNaseのレベルとmRNA分解を減少させるRNaseE遺伝子(rne131)の変異により、mRNAの安定性を高め、それによってmRNA転写物の安定性を高め、タンパク質の収量を増やします。タンパク質発現は、異種タンパク質の分解を低減するlonおよび外膜(OmpT)プロテアーゼが存在しないことでさらに強化されます。

注:BL21 Star™株は、mRNAの安定性が向上しているため、BL21株よりも異種遺伝子の基礎発現が高くなります。そのため、これらの菌株は毒性遺伝子の発現には有用ではない可能性があります。

遺伝子型: F-ompT hsdSB(rB-、mB-galdcmrne131(DE3)


お客様が必要とする菌株とフォーマットを見つけ出してください。当社は、お客様固有の形質転換ニーズを満たすために、他の多くの異なる菌株とフォーマットのケミカルコンピテントセルおよびエレクトロコンピテントセルも提供しています。毒性タンパク質の発現に は、BL21-AI™ One Shot™ケミカルコンピテント大腸菌をご検討ください。
研究用にのみ使用できます。診断用には使用いただけません。
仕様
抗生物質耐性菌No
青/白スクリーニング不可
メチル化DNAのクローニング不可
F'エピソームを含むF’エピソームが欠落しています
高スループット適合性ハイスループット非対応(手動)
プラスミドの品質を向上不可
Improves Protein StabilityYes (lon, ompT)
Improves RNA StabilityYes (rne131)
非メチル化DNAの調製Yes (dcm)
製品ラインOne Shot
製品タイプコンピテントセル
数量21 x 50 μL/tube
組換えを抑制不可
出荷条件Dry Ice
T1ファージ-耐性(tonA)不可
Toxic ProteinsNo
形質転換効率レベル中効率 (10^8-10^9 cfu⁄µg)
フォーマットOne Shot
プロモーターT7
E. coli
Unit SizeEach
組成および保存条件
内容:
•One Shot™ BL21 Star™(DE3)大腸菌:20 バイアル、各 50µ l(合計 1 ml)
• pUC19 DNA( 10 pg/ul):1 バイアル、50 µl
• SOC 培地:1本、6 ml

Competent Cellは-80℃で保存してください。pUC19 DNAは-20℃で保存してください。SOC培地は4℃または室温で保存してください。

よくあるご質問(FAQ)

My gene of interest is toxic to bacterial cells. Are there any precautions you can suggest?

Several precautions may be taken to prevent problems resulting from basal level expression of a toxic gene of interest. These methods all assume that the T7-based or Champion-based expression plasmid has been correctly designed and created.

- Propagate and maintain your expression plasmid in a strain that does not contain T7 RNA polymerase (i.e., DH5α).
- If using BL21 (DE3) cells, try growing cells at room temperature rather than 37 degrees C for 24-48 hr.
- Perform a fresh transformation using a tightly regulated E. coli strain, such as BL21-AI cells.
- After following the transformation protocol, plate the transformation reaction on LB plates containing 100 µg/mL ampicillin and 0.1% glucose. The presence of glucose represses basal expression of T7 RNA polymerase.
- Following transformation of BL21-AI cells, pick 3 or 4 transformants and inoculate directly into fresh LB medium containing 100 µg/mL ampicillin or 50 µg/mL carbenicillin (and 0.1% glucose, if desired). When the culture reaches an OD600 of 0.4, induce expression of the recombinant protein by adding L-arabinose to a final concentration of 0.2%.
- When performing expression experiments, supplement the growth medium with 0.1% glucose in addition to 0.2% arabinose.
- Try a regulated bacterial expression system such as our pBAD system.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm trying to express my protein using a bacterial expression system. How do I know if I'm seeing degradation of my protein or if what I’m seeing is codon usage bias?

Typically, if you see 1-2 dominant bands, translation stopped prematurely due to codon usage bias. With degradation, you usually see a ladder of bands. With degradation, you can try using a protease inhibitor and add it to the lysis buffer to help prevent degradation. If degradation is the issue, a time point experiment can be done to determine the best time to harvest the cells.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm trying to express my protein using a bacterial expression system and am getting inclusion bodies. What should I do?

If you are having a solubility issue, try to decrease the temperature or decrease the amount of IPTG used for induction. You can also try a different, more stringent cell strain for expression. Adding 1% glucose to the bacterial culture medium during expression can also help.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm getting low protein yield from my bacterial expression system. What can I do to improve this?

- Inoculate from fresh bacterial cultures, since higher protein yields are generally obtained from a fresh bacterial colony.

- Check the codon usage in the recombinant protein sequence for infrequently used codons. Replacing the rare codons with more commonly used codons can significantly increase expression levels. For example, the arginine codons AGG and AGA are used infrequently by E. coli, so the level of tRNAs for these codons is low.

- Add protease inhibitors, such as PMSF, to buffers during protein purification. Use freshly made PMSF, since PMSF loses effectiveness within 30 min of dilution into an aqueous solution.

- If you are using ampicillin for selection in your expression experiments, you may be experiencing plasmid instability due to the absence of selective conditions. This occurs as the ampicillin is destroyed by β-lactamase or hydrolyzed under the acidic media conditions generated by bacterial metabolism. You may want to substitute carbenicillin for ampicillin in your transformation and expression experiments.

- The recombinant protein may be toxic to bacterial cells. Try a tighter regulation system for competent cell expression such as BL21-AI. You may also consider trying a different expression system such as the pBAD system.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

My cells are growing very slowly, and I'm not getting any protein expression from my baterial expression system. What can I do to fix this?

This typically occurs when your gene of interest is toxic. Try using a tighter regulation system, such as BL21 (DE3) (pLysS) or BL21 (DE3) (pLysE), or BL21(AI).

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

引用および参考文献 (10)

引用および参考文献
Abstract
Systematic cloning of Treponema pallidum open reading frames for protein expression and antigen discovery.
Authors:McKevitt M, Patel K, Smajs D, Marsh M, McLoughlin M, Norris SJ, Weinstock GM, Palzkill T,
Journal:Genome Res
PubMed ID:12805273
'A topoisomerase-based method was used to clone PCR products encoding 991 of the 1041 open reading frames identified in the genome sequence of the bacterium that causes syphilis, Treponema pallidum subsp. pallidum. Cloning the open reading frames into the univector plasmid system permitted the rapid conversion of the original clone ... More
Human DNA polymerase N (POLN) is a low fidelity enzyme capable of error-free bypass of 5S-thymine glycol.
Authors:Takata K, Shimizu T, Iwai S, Wood RD,
Journal:J Biol Chem
PubMed ID:16787914
'Human DNA polymerase N (POLN or pol nu) is the most recently discovered nuclear DNA polymerase in the human genome. It is an A-family DNA polymerase related to Escherichia coli pol I, human POLQ, and Drosophila Mus308. We report the first purification of the recombinant enzyme and examination of its ... More
ATP stimulates signal recognition particle (SRP)/FtsY-supported protein integration in chloroplasts.
Authors: Yuan Jianguo; Kight Alicia; Goforth Robyn L; Moore Misty; Peterson Eric C; Sakon Joshua; Henry Ralph;
Journal:J Biol Chem
PubMed ID:12105232
'The signal recognition particle (SRP) and its receptor (FtsY in prokaryotes) are essential for cotranslational protein targeting to the endoplasmic reticulum in eukaryotes and the cytoplasmic membrane in prokaryotes. An SRP/FtsY-like protein targeting/integration pathway in chloroplasts mediates the posttranslational integration of the light-harvesting chlorophyll a/b-binding protein (LHCP) into thylakoid membranes. ... More
Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system.
Authors:Studier FW
Journal:J Mol Biol
PubMed ID:2023259
'Bacteriophage T7 lysozyme, a natural inhibitor of T7 RNA polymerase, can reduce basal activity from an inducible gene for T7 RNA polymerase and allow relatively toxic genes to be established in the same cell under control of a T7 promoter. Low levels of T7 lysozyme supplied by plasmids pLysS or ... More
Structural mechanism for the carriage and release of thyroxine in the blood.
Authors:Zhou A, Wei Z, Read RJ, Carrell RW,
Journal:Proc Natl Acad Sci U S A
PubMed ID:16938877
'The hormones that most directly control tissue activities in health and disease are delivered by two noninhibitory members of the serpin family of protease inhibitors, thyroxine-binding globulin (TBG) and corticosteroid-binding globulin. The structure of TBG bound to tetra-iodo thyroxine, solved here at 2.8 A, shows how the thyroxine is carried ... More