CB Omni Agileオンライン元素分析装置
CB Omni Agileオンライン元素分析装置
Thermo Scientific™

CB Omni Agileオンライン元素分析装置

PGNAAまたはPFTNAオンライン元素分析装置を使用して、プロセス最適化のためのリアルタイムの品質管理を実行。
製品番号(カタログ番号)概要
CBOMNIAGILECB Omni Agileオンライン元素分析装置
製品番号(カタログ番号) CBOMNIAGILE
価格(JPY)
-
見積もりを依頼する
概要:
CB Omni Agileオンライン元素分析装置

Thermo Scientific™ CB Omni™ Agileオンライン元素分析装置はさまざまなアプリケーションに対応するオプションが採用できる、他に類を見ない柔軟な構成をご提供いたします。CB Omni Agileは、お客様のアプリケーションに適した最新のモジュラー式工業デザインにより、構成機能を強化するだけでなく、業界をリードし、お客様が期待している性能を備えつつ、より軽量で設置が簡単な分析計をも実現します。

CB Omni Agileは、次のようなアプリケーションで使用できる強力なプロセス最適化ツールです。

  • 鉱山品位の管理
  • 材料の選別
  • 材料配合
  • ストックパイル管理

CB Omni Agileは、即発γ線中性子放射化分析(PGNAA)またはパルス高速熱中性子放射化(PFTNA)技術を使用して、原料プロセスの流れ全体のリアルタイムオンライン元素分析を提供します。モジュール式の工業デザインを採用したこの分析装置は、前世代の分析装置よりも軽量で設置が容易です。他に類を見ない柔軟性により、アプリケーションおよびプロセス管理のニーズに合わせて分析装置を構成できます。

お客様のプロセスに合うCB Omni Agileの利点:

  • 適応性が向上したことにより、プロセス制御のニーズに応じて、分析装置の構成の選択と最適化が促進できます。
  • 見込まれる所有コストを削減しながら配合精度を向上。
  • 1~4個の大容量のNal検出器により、追加の線源を必要とせずに優れた精度を実現。
  • 線源の柔軟性により、プロセスに最適なソリューションを選択でき、市場の変動や落ち込みには縛られなくなります。
  • オプションの包括的なソフトウェアパッケージを使用すると、重要なプロセス管理の決定を行う上で、お客様の分析装置に付加価値をご提供します。
  • 必要に応じて簡単に設置および再配置できるように設計されています。
  • 精度が向上することで、より正確なプロセス管理と迅速な投資回収が可能になります。

CB Omni Agile分析装置は、製品品質の配合、選別、およびモニタリングが可能ですので、連続サンプリングの必要が無く、高価な材料の使用を最小限に抑えます。一貫した製品品質により、効率が向上し、プロセス不調の影響が低減され、圧搾加工スループットが向上し、エネルギー消費が低減され、耐火性寿命が延長されます。

CB Omni Agileは、中性子の励起源を選択する柔軟性を提供するだけでなく、プロセスに合わせて構成を最適化する柔軟性も提供します。従来、分析装置は、より高い精度を実現するために、追加の検出器や中性子線源強度を向上させてることに頼ってきました。CB Omni Agileでは構成が柔軟になっており、最適な線源のオプションだけでなく、必要な検出器の量と数も選択する必要があるようなアプリケーションのプロセス管理が可能になります。一部のアプリケーションでは、より微量の中性子源を使用することで配合精度を向上させることができるため、所有コストの削減につながります。

オプションのソフトウェア

Thermo Scientific™ Omni Viewは、データの処理、表示、アーカイブを行い、同時に装置の状態を監視します。Omni Viewは高度に設定可能で、メインオペレーターコンソールと同じネットワーク上で複数の遠隔ワークステーションを実行可能です。  

Thermo Scientific™ RAMOS(原料配合最適化ソフトウェア)またはThermo Scientific™ PREBOS(配合前最適化ソフトウェア)は、CB Omni Agileにより提供される高頻度分析を使用して搬送を自動的に制御し、配合比率を最適化します。

Thermo Scientific™ AccuLinkは、CB Omni AgileをラボのX線蛍光装置と継続的に連携できる、自動キャリブレーションおよび統計分析ツールです。

 

仕様
概要CB Omni Agileオンライン元素分析装置
Unit SizeEach

よくあるご質問(FAQ)

Do you have any tips on determining ROI to justify an investment in online elemental analysis?

Justifying any decision around online analysis requires careful and fair consideration of the associated upside.

For a decision around dedicated sampling/analysis stations for a new build, we recommend making a conservative estimate of savings in materials and not underestimating the value of time. A few months' saving on the construction timeline translates directly into an earlier swing from expenditure to income, an inflection point that cannot come soon enough for most projects.

For process control, consider the current situation to determine the magnitude of possible gains. For example:

- What is a recovery improvement worth for your process?

- If you could reduce impurities in the concentrate, what would that mean for selling price?

- What’s the difference in flotation reagent consumption, best to worst current case? What would be the savings if you consistently hit the best case?

- How much are you overmilling over milling to avoid overly coarse material exiting the grinding circuit? What would be the energy savings if you weren’t? Online analysis should pay its way, and easily, so calculations such as these should readily highlight optimal areas for economic implementation and provide evidence to support investment.

How does real-time online elemental analysis data assist in stabilizing grinding circuit and flotation plant operations?

In the grinding circuit, under-grinding typically means poor metal recovery (mineral processing) or sub-standard product (cement). Over-grinding, on the other hand, drives up energy consumption and results in undesirable levels of fines. Milling just enough, balances these competing impacts. Online real-time particle sizing analysis makes it possible both to identify an optimal setpoint for particle size and then reliably maintain it.

In a flotation plant, there is an analogous balance to establish. Poor separation means excessive metal loss while excessive reagent addition is expensive and environmentally undesirable. Here, real-time elemental analysis can provide the information needed to identify the operational sweet spot and optimal control in the face of changes in particle size, ore mineralogy, and pulp density.

In both cases, with real-time data, changes tend to be more frequent but smaller, i.e., the plant stabilizes, with automated control minimizing variability.

Why is high availability of assay data necessary for effective process control in elemental analysis?

If you are aiming for automated process control, then that is only practical with high availability and 95% should be an absolute minimum. Otherwise, switching to and from manual process control will be arduous and problematic with respect to operational efficiency. If availability is not demonstrably high, then operators cannot rely on an analyzer, whether control is manual or automated, and it never becomes an integral part of the control architecture.

How important is measurement interval for process control with on-line elemental analyzer data? How can I determine how often to sample/measure?

When implementing online analysis, there are two key questions to consider: What can I measure? And what can I control to affect that measurement?

Let’s take grinding circuit control as an example. A measurable variable is the particle size of the exiting material, and it can be controlled by parameters such as mill throughput and speed of rotation. How often to measure is then the next question. With manual control, a large interval between measurements inhibits an operator’s ability to adjust the process effectively. There is a long lag between taking action and seeing the result. Increasing measurement frequency, to the limit of real-time measurement, improves feedback allowing the operator to learn how to 'steer' the circuit more effectively. The result will be steadier operation with an automated, well-tuned control loop, the best solution for driving variability to a minimum.

If you can measure and tightly control a vital characteristic of a key stream, in a grinding or flotation circuit, or elsewhere on the plant, then the rewards can be substantial. If you can’t influence a measurable parameter, then there is far less impetus to measure it at all, or with any frequency, though measurement may still be valuable for upset monitoring. Focus on how you would use data if you had it to identify the best places for investment and the frequency of measurement that will be most useful.

What are the operational pros and cons of multi-stream and dedicated analyzers for slurries?

Well-designed dedicated analyzers require only minimal cleaning and maintenance for reliable operation over the long-term. The sample transport associated with centralized systems, on the other hand, requires the addition of pumps and small-bore sample lines adding additional complexity and failure points to the system. These have potential to affect data availability and cost of ownership due to the maintenance, running costs, and emissions associated with pump operation. Such systems are often installed with good intentions and a sound understanding of the practice required to keep them in good working order, but over the years, enthusiasm and rigor have tended to dwindle. Abandoned lines are common with centralized analyzers, an important point to note when assessing upfront CAPEX.

The other significant difference between multi-stream and dedicated analyzers is measurement frequency. For streams that justify real-time measurement, or as close as is feasible, dedicated analyzers are unbeatable.