Novex™ Tricine Mini Protein Gels, 10%, 1.0 mm
Run Invitrogen Mini Protein Gels in Bio-Rad's Mini-PROTEAN® Tetra Cell. Click here for more information.
Novex™ Tricine Mini Protein Gels, 10%, 1.0 mm
Invitrogen™

Novex™ Tricine Mini Protein Gels, 10%, 1.0 mm

Invitrogen Novexトリシンゲルは、低分子量のタンパク質およびペプチドの分離を実現します。このシステムでは、トリシンが泳動バッファー中のグリシンに取って代わるため、低分子量タンパク質のより効率的なスタッキングとデスタッキングに加えて、より小さなペプチドに対してより高い分解能が得られます。
製品番号(カタログ番号)ウェル
EC66752BOX12ウェル
EC6675BOX10ウェル
製品番号(カタログ番号) EC66752BOX
価格(JPY)
30,400
Each
お問い合わせください ›
ウェル:
12ウェル
Invitrogen Novexトリシンゲルは、低分子量のタンパク質およびペプチドの分離を実現します。トリシンシステムは、Schaeggerおよびvon Jagow(Schaeggerおよび von Jagow、1987によって開発された、ペプチドおよび低分子量タンパク質の分離用のトリス-グリシン不連続バッファーシステムの改良版です。このシステムでは、トリシンが泳動バッファー中のグリシンに取って代わるため、低分子量タンパク質のより効率的なスタッキングとデスタッキングに加えて、より小さなペプチドのより高い分解能が得られます。

Novex Tricineタンパク質ゲルの特長:
•分子量が2 kDaのタンパク質の分解能が向上します
• PVDFへの転写後、タンパク質の直接シーケンシングとの互換性が改善されます
• TricineバッファーシステムのpHが低いため、タンパク質の修飾が最小限に抑制されます

製剤
Invitrogen Tricineゲルは、高純度で厳格に品質管理された試薬で製造されています:トリス塩基、HCl、アクリルアミド、ビスアクリルアミド、TEMED、APS、および高精製水。当社のトリシンゲルは4%のスタッキングゲルを備えており、SDSを含んでいません。トリシンシステムで最良の結果を得るには、サンプルおよび泳動バッファーにSDSが必要です。

タンパク質分離に適した トリシンゲルをお選びください。
Invitrogen トリシンゲルには、3種類のポリアクリルアミド濃度が10%、16%、および10–20% の勾配で含まれています。10ウェル、12ウェル、15ウェルなど、当社のさまざまなウェルフォーマットからお選びください。トリシンゲルは、変性ゲル電気泳動アプリケーション用に調製されています。最適なサンプル調製のためには、トリシンSDSサンプルバッファー(LC1676)を、最適な分離には、トリシンSDS泳動バッファー(LC1675)を使用することをお勧めします。

タンパク質を膜に転写する際に、ミニブロットモジュール(B1000)またはXCell IIブロットモジュール(EI9051)を使用して従来のウェット転写を行う場合は、Novex Tris-Glycine転送バッファー(LC3675)の使用をお勧めします。高速セミドライ転写にはInvitrogen Power Blotter、または高速ドライ転写にはiBlot 2 Gel転写装置(IB21001)を使用することも可能です。

For Research Use Only. Not for use in diagnostic procedures.
仕様
Gel Thickness1.0 mm
長さ(メートル法)8 cm
分離モード分子量
製品ラインNovex
数量10ゲル/箱
推奨アプリケーション変性
サンプル充填量最大20 µL
品質保持期間16週間
出荷条件湿氷
保存要件2~8℃にて保存してください。冷凍不可。
幅(メートル法)8 cm
使用対象 (装置)Mini Gel Tank, XCell SureLock Mini-Cell
ゲル濃度10%
ゲルサイズミニ
ゲルタイプトリシン
分離範囲10~30 kDa
分離タイプ変性
ウェル12ウェル
Unit SizeEach

よくあるご質問(FAQ)

What does it mean when bands appear to be getting narrower (or "funneling") as they progress down a protein gel?

There may be too much beta-mercaptoethanol (BME), sample buffer salts, or dithiothreitol (DTT) in your samples. If the proteins are over-reduced, they can be negatively charged and actually repel each other across the lanes causing the bands to get narrower as they progress down the gel.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

If a Tricine gel heats up to around 37°C during a run, should any precautions be taken?

A temperature increase to 35°C to 40°C during electrophoresis is not uncommon for Tricine gels. If you want to run the gels at a cooler temperature, the lower (outer) buffer chamber can be filled higher or they can be run at a lower voltage, for example 100 V.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

What type of transfer buffer should be used with Invitrogen Tricine gels?

For non-sequencing applications, any transfer buffer used with Tris-Glycine gels can be used with Tricine gels including Tris-Glycine transfer buffer. For sequencing applications, the buffer should be chemically compatible with sequencing protocols. Non-glycine based transfer buffers such as the NuPAGE Transfer buffer, 1/2X TBE Transfer buffer, or CAPS Buffer can be used for N-terminal sequencing . Generally, a pH which is close to neutral is desirable to maintain gel and protein stability. High current should be avoided because it can lead to heat generation and instability.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

If a Tricine gel is accidentally run with buffers used in the Tris-Glycine system, what will happen and why?

If the Tricine gel is run with Tris-Glycine sample buffer, the bands will behave abnormally and resolve poorly. If the Tricine gel is accidentally run with Tris-Glycine running buffer, the gel will take longer to run and the resolution, especially for smaller proteins, will be worse than when the proteins are run on a Tris-Glycine gel with Tris-Glycine buffers. This is due to a combination of increase in stack area size (glycine is a slower ion than Tricine) and the higher ionic strength of the Tricine gel.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

What is the cause of smeary artifacts down the lanes of a Tricine gel and how can this be prevented?

Protein samples are possibly reoxidizing before the run is complete in the Tricine gel system. Since Tricine is a glycine derivative, the running pH ranges of the two systems are different. As a consequence, reduced samples tend to oxidize more in the Tricine system. Adding more reducing agent will not solve the problem.

One option is to alkylate the sample by reducing with 20 mM DTT at 70°C for 30 min, followed by 50 mM iodoacetic acid to alkylate.

Another method which inhibits oxidation is the addition of thioglycolic acid (TGA) to the running buffer. The reference to this is described by Hunkapiller et al, Methods of Enzymology, (91), 399, 1983.

Caution should be taken when using this method since this compound is both toxic and expensive. In addition, the TGA must be fresh as it tends to become oxidized itself over time. Oxidized TGA will actually promote sample re-oxidation.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

引用および参考文献 (4)

引用および参考文献
Abstract
Immune response to Yersinia outer proteins and other Yersinia pestis antigens after experimental plague infection in mice.
Authors:Benner GE, Andrews GP, Byrne WR, Strachan SD, Sample AK, Heath DG, Friedlander AM,
Journal:Infect Immun
PubMed ID:10085037
'There is limited information concerning the nature and extent of the immune response to the virulence determinants of Yersinia pestis during the course of plague infection. In this study, we evaluated the humoral immune response of mice that survived lethal Y. pestis aerosol challenge after antibiotic treatment. Such a model ... More
Aggregation of the Fc epsilon RI in mast cells induces the synthesis of Fos-interacting protein and increases its DNA binding-activity: the dependence on protein kinase C-beta.
Authors:Lewin I, Jacob-Hirsch J, Zang ZC, Kupershtein V, Szallasi Z, Rivera J, Razin E,
Journal:J Biol Chem
PubMed ID:8576146
The ability of c-Fos to dimerize with various proteins creates transcription complexes which can exert their regulatory function on a variety of genes. One of the transcription factors that binds to c-Fos is the newly discovered Fos-interacting protein (FIP). In this report we present evidence for the regulation of the ... More
Enzyme-substrate intermediate at a specific lysine residue is required for deoxyhypusine synthesis. The role of Lys329 in human deoxyhypusine synthase.
Authors:Joe YA, Wolff EC, Lee YB, Park MH,
Journal:J Biol Chem
PubMed ID:9405486
Deoxyhypusine synthase catalyzes the first step in the post-translational synthesis of hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine] in eukaryotic translation initiation factor 5A. We recently reported biochemical evidence for a covalent enzyme-substrate intermediate involving a specific lysine residue (Lys329) in human deoxyhypusine synthase (Wolff, E. C., Folk, J. E., and Park, M. H. (1997) ... More
Anti-tumor antibody BR96 blocks cell migration and binds to a lysosomal membrane glycoprotein on cell surface microspikes and ruffled membranes.
Authors:Garrigues J, Anderson J, Hellström KE, Hellström I,
Journal:J Cell Biol
PubMed ID:7511141
BR 96 is an internalizing antibody that binds to Lewis Y (Le(y)), a carbohydrate determinant expressed at high levels on many human carcinomas (Hellström, I., H. J. Garrigues, U. Garrigues, and K. E. Hellström. 1990. Cancer Res. 50:2183-2190). Breast carcinoma cell lines grown to confluence bind less BR96 than subconfluent ... More