Novex™ Tricine Mini Protein Gels, 10%, 1.0 mm
Run Invitrogen Mini Protein Gels in Bio-Rad's Mini-PROTEAN® Tetra Cell. Click here for more information.
Novex™ Tricine Mini Protein Gels, 10%, 1.0 mm
Invitrogen™

Novex™ Tricine Mini Protein Gels, 10%, 1.0 mm

Invitrogen Novexトリシンゲルは、低分子量のタンパク質およびペプチドの分離を実現します。このシステムでは、トリシンが泳動バッファー中のグリシンに取って代わるため、低分子量タンパク質のより効率的なスタッキングとデスタッキングに加えて、より小さなペプチドに対してより高い分解能が得られます。
製品番号(カタログ番号)ウェル
EC6675BOX10ウェル
EC66752BOX12ウェル
製品番号(カタログ番号) EC6675BOX
価格(JPY)
18,200
온라인 행사
Ends: 26-Dec-2025
30,400
割引額 12,200 (40%)
Each
お問い合わせください ›
ウェル:
10ウェル
Invitrogen Novexトリシンゲルは、低分子量のタンパク質およびペプチドの分離を実現します。トリシンシステムは、Schaeggerおよびvon Jagow(Schaeggerおよび von Jagow、1987によって開発された、ペプチドおよび低分子量タンパク質の分離用のトリス-グリシン不連続バッファーシステムの改良版です。このシステムでは、トリシンが泳動バッファー中のグリシンに取って代わるため、低分子量タンパク質のより効率的なスタッキングとデスタッキングに加えて、より小さなペプチドのより高い分解能が得られます。

Novex Tricineタンパク質ゲルの特長:
•分子量が2 kDaのタンパク質の分解能が向上します
• PVDFへの転写後、タンパク質の直接シーケンシングとの互換性が改善されます
• TricineバッファーシステムのpHが低いため、タンパク質の修飾が最小限に抑制されます

製剤
Invitrogen Tricineゲルは、高純度で厳格に品質管理された試薬で製造されています:トリス塩基、HCl、アクリルアミド、ビスアクリルアミド、TEMED、APS、および高精製水。当社のトリシンゲルは4%のスタッキングゲルを備えており、SDSを含んでいません。トリシンシステムで最良の結果を得るには、サンプルおよび泳動バッファーにSDSが必要です。

タンパク質分離に適した トリシンゲルをお選びください。
Invitrogen トリシンゲルには、3種類のポリアクリルアミド濃度が10%、16%、および10–20% の勾配で含まれています。10ウェル、12ウェル、15ウェルなど、当社のさまざまなウェルフォーマットからお選びください。トリシンゲルは、変性ゲル電気泳動アプリケーション用に調製されています。最適なサンプル調製のためには、トリシンSDSサンプルバッファー(LC1676)を、最適な分離には、トリシンSDS泳動バッファー(LC1675)を使用することをお勧めします。

タンパク質を膜に転写する際に、ミニブロットモジュール(B1000)またはXCell IIブロットモジュール(EI9051)を使用して従来のウェット転写を行う場合は、Novex Tris-Glycine転送バッファー(LC3675)の使用をお勧めします。高速セミドライ転写にはInvitrogen Power Blotter、または高速ドライ転写にはiBlot 2 Gel転写装置(IB21001)を使用することも可能です。

For Research Use Only. Not for use in diagnostic procedures.
仕様
Gel Thickness1.0 mm
長さ(メートル法)8 cm
分離モード分子量
製品ラインNovex
数量10ゲル/箱
推奨アプリケーション変性
サンプル充填量最大25 µL
品質保持期間16週間
出荷条件湿氷
保存要件2~8℃にて保存してください。冷凍不可。
幅(メートル法)8 cm
使用対象 (装置)Mini Gel Tank, XCell SureLock Mini-Cell
ゲル濃度10%
ゲルサイズミニ
ゲルタイプトリシン
分離範囲6~200 kDa
分離タイプ変性
ウェル10ウェル
Unit SizeEach

よくあるご質問(FAQ)

Why do Invitrogen Tricine gels work better for smaller proteins and peptides?

The Tricine gel system, first described by Schagger and von Jagow in 1987, is a modification of the Laemmli Tris-Glycine system to allow for better resolution of smaller proteins and peptides. In the Laemmli system, the proteins are "stacked" in the porous top portion of the gel (stacking gel) between a highly mobile "leading" chloride ion present in the gel buffer and the slower "trailing" glycine ion supplied by the running buffer. These concentrated, thin bands of protein undergo sieving once they reach the resolving gel, which separates them by size.

The resolution of smaller proteins (under 5 kDa) is hindered by the continuous accumulation of free dodecyl-sulfate (DS) ions (from the SDS sample and running buffers) in the stack. This build-up of DS leads to convective mixing of the DS ions with the smaller proteins, causing fuzzy bands and decreased resolution. The mixing of the DS ions with the small proteins will also interfere with the fixing and staining process later. To solve this problem, Schagger and von Jagow replaced the trailing glycine ion with a faster moving Tricine trailing ion. Many small proteins which run with the stacked DS in the Tris Glycine system will separate from DS in the Tricine gel system, resulting in sharper, cleaner bands and better resolution.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

What does it mean when bands appear to be getting narrower (or "funneling") as they progress down a protein gel?

There may be too much beta-mercaptoethanol (BME), sample buffer salts, or dithiothreitol (DTT) in your samples. If the proteins are over-reduced, they can be negatively charged and actually repel each other across the lanes causing the bands to get narrower as they progress down the gel.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

What causes dumbbell- or barbell-shaped bands during protein electrophoresis?

Barbell-shaped bands are a result of loading too large a sample volume.

When a large sample volume is loaded, part of the sample tends to diffuse to the sides of the wells. When the run begins and the sample moves through the stacking portion of the gel, the sample will stack incompletely, causing a slight retardation of the portion of the sample that diffused to the sides of the wells.

This effect may be intensified in larger proteins, whose migration is more impeded in the low concentration acrylamide of the stacking gel.

To alleviate the problem, concentrate the protein and load a smaller volume. This gives a "thinner" starting zone.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

What can cause "streaking forward" or "frowning" of samples on a SDS-PAGE gel? How can the results be improved?

Some potential causes are:

1) Re-oxidation of protein during run

2) Protein has highly hydrophobic regions where protein can exclude SDS.

Steps you can take to improve results:

1) Reduce samples right before loading, and add antioxidant to running buffer. Do not use samples that have been stored in reducing agent.

2) Load sample with 2X sample buffer instead of 1X.

3) Add SDS to upper chamber buffer: try 0.1, 0.2, 0.3, and 0.4% (don't go any higher than 0.4%)

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

Will NP-40 affect the migration of the samples in the SDS-PAGE gel?

Yes. All detergents and even phospholipids in cell extracts will form mixed micelles with SDS and migrate down into the gel.

They can also interfere with the SDS:protein binding equilibrium. Most of the nonionic detergents significantly interfere with SDS-PAGE.

We recommend that you keep the ratio of SDS to lipid or other detergent at 10:1 (or greater) to minimize these effects.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

引用および参考文献 (5)

引用および参考文献
Abstract
Immune response to Yersinia outer proteins and other Yersinia pestis antigens after experimental plague infection in mice.
Authors:Benner GE, Andrews GP, Byrne WR, Strachan SD, Sample AK, Heath DG, Friedlander AM,
Journal:Infect Immun
PubMed ID:10085037
'There is limited information concerning the nature and extent of the immune response to the virulence determinants of Yersinia pestis during the course of plague infection. In this study, we evaluated the humoral immune response of mice that survived lethal Y. pestis aerosol challenge after antibiotic treatment. Such a model ... More
Aggregation of the Fc epsilon RI in mast cells induces the synthesis of Fos-interacting protein and increases its DNA binding-activity: the dependence on protein kinase C-beta.
Authors:Lewin I, Jacob-Hirsch J, Zang ZC, Kupershtein V, Szallasi Z, Rivera J, Razin E,
Journal:J Biol Chem
PubMed ID:8576146
The ability of c-Fos to dimerize with various proteins creates transcription complexes which can exert their regulatory function on a variety of genes. One of the transcription factors that binds to c-Fos is the newly discovered Fos-interacting protein (FIP). In this report we present evidence for the regulation of the ... More
Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus
Authors:Sapra R, Verhagen MF, Adams MW
Journal:J Bacteriol
PubMed ID:10852873
Highly washed membrane preparations from cells of the hyperthermophilic archaeon Pyrococcus furiosus contain high hydrogenase activity (9.4 micromol of H(2) evolved/mg at 80 degrees C) using reduced methyl viologen as the electron donor. The enzyme was solubilized with n-dodecyl-beta-D-maltoside and purified by multistep chromatography in the presence of Triton X-100. ... More
Enzyme-substrate intermediate at a specific lysine residue is required for deoxyhypusine synthesis. The role of Lys329 in human deoxyhypusine synthase.
Authors:Joe YA, Wolff EC, Lee YB, Park MH,
Journal:J Biol Chem
PubMed ID:9405486
Deoxyhypusine synthase catalyzes the first step in the post-translational synthesis of hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine] in eukaryotic translation initiation factor 5A. We recently reported biochemical evidence for a covalent enzyme-substrate intermediate involving a specific lysine residue (Lys329) in human deoxyhypusine synthase (Wolff, E. C., Folk, J. E., and Park, M. H. (1997) ... More
Anti-tumor antibody BR96 blocks cell migration and binds to a lysosomal membrane glycoprotein on cell surface microspikes and ruffled membranes.
Authors:Garrigues J, Anderson J, Hellström KE, Hellström I,
Journal:J Cell Biol
PubMed ID:7511141
BR 96 is an internalizing antibody that binds to Lewis Y (Le(y)), a carbohydrate determinant expressed at high levels on many human carcinomas (Hellström, I., H. J. Garrigues, U. Garrigues, and K. E. Hellström. 1990. Cancer Res. 50:2183-2190). Breast carcinoma cell lines grown to confluence bind less BR96 than subconfluent ... More