Calcium Phosphate Transfection Kit
Calcium Phosphate Transfection Kit
Invitrogen™

Calcium Phosphate Transfection Kit

カルシウムリン酸トランスフェクションキットは高品質の試薬を提供し、リン酸カルシウム共沈降を介して真核細胞に DNA を導入できるようにします。原理哺乳類細胞に DNA を導入するためのリン酸カルシウムトランスフェクション法は、リン酸カルシウム -DNA 沈殿を形成することに基づいています詳細を見る
製品番号(カタログ番号)数量
K27800175反応
製品番号(カタログ番号) K278001
価格(JPY)
65,900
Each
お問い合わせください ›
数量:
75反応
カルシウムリン酸トランスフェクションキットは高品質の試薬を提供し、リン酸カルシウム共沈降を介して真核細胞に DNA を導入できるようにします。

原理
哺乳類細胞に DNA を導入するためのリン酸カルシウムトランスフェクション法は、リン酸カルシウム -DNA 沈殿を形成することに基づいています。リン酸カルシウムは、細胞表面への DNA の結合を容易にします。次に、エンドサイトーシスによって DNA が細胞に入ります。この方法は、最初に Graham とvan der Ebb により開発され、 後に Wigle によって改良されましたこの手順は日常的に、さまざまな種類の細胞をトランスフェクションして一過性発現を実現したり、安定した形質転換体を生成するために使用されます。DNA をCaCl2の濃縮溶液と直接混合し、リン酸緩衝液に滴下して微細な沈殿物を形成します。DNA-CaCl2 溶液を添加しながらリン酸緩衝液をエアレーションすることで、その形態の沈殿が可能な限り正確になるようにすることができます。これは、凝集した DNA が効率的に細胞に付着したり、細胞に侵入したりすることがないため重要です。
研究用にのみ使用できます。診断用には使用いただけません。
仕様
使用対象(アプリケーション)Transfection
高スループット適合性ハイスループット非対応(手動)
製品タイプトランスフェクションキット
数量75反応
適合血清不可
細胞タイプ株化細胞株
フォーマット6ウェルプレート、12ウェルプレート、24ウェルプレート、48ウェルプレート、96ウェルプレート、フラスコ
サンプルタイププラスミドDNA
Transfection Technique化学的トランスフェクション
Unit SizeEach
組成および保存条件
2 × 12 ml 組織培養滅菌水
2 × 12 ml 2X HEPES 緩衝生理食塩水(HBS)
3 × 1 ml 2 M CaCl2
20 µg pcDNA™3.1/His/lacZ

すべての成分を -5~-30 ℃ で保管します

よくあるご質問(FAQ)

I have tried several different transfection reagents and have failed to transfect my gene into my cell line of interest. Do you have any suggestions?

We recommend that you try electroporation as a method of delivering your plasmid of interest. We offer the Neon Transfection System for highly efficient transfection of primary cells, stem cells, and difficult-to-transfect cells. You may also consider using a viral-based system (https://www.thermofisher.com/us/en/home/life-science/protein-biology/protein-expression/mammalian-protein-expression/viral-delivery-mammalian-expression.html) to deliver your gene into your mammalian cell line of interest.

Find additional tips, troubleshooting help, and resources within ourTransfection Basics Support Center.

How do I perform a dose-response curve or kill curve?

The dose-response curve is a valuable tool to determine cell toxicity when exposed to various concentrations of antibiotic. The amount of selective antibiotic required to select for resistant cells varies with a number of factors, including cell type and type of antibiotic. We recommend performing a dose-response curve every time a new antibiotic (or a different brand) or a different cell line is used.

Experimental outline of dose-response curve assay:

1.Plate cells in a number of wells such that they are 25–30% confluent. This means that the cells are still dividing and hence will respond well to the antibiotic.
2.Dilute the antibiotic being tested to a broad linear concentration of the recommended range in growth medium.
3.Remove the growth medium from the cells. Apply the antibiotic-containing medium to the respective wells, leaving one set of wells empty. To these wells, add growth medium that does not contain the antibiotic.
4.Culture cells under proper growth conditions (change the medium every 3–4 days to get rid of dead cells and add fresh medium containing antibiotic) and observe the cells daily. At 10–14 days, assess the number of viable cells in each well. (This time period depends upon the antibiotic being tested; antibiotics such as Geneticin, Hygromycin, and Zeocin take about 3 weeks to kill cells, so waiting for 10–14 days would be ideal. However, for Blasticidin, which kills cells in about 2 weeks, waiting for 7–10 days would be sufficient.) To do this, aspirate the medium, wash the cells with phosphate-buffered saline and stain the cells with 0.5% methylene blue and 50% methanol for 20 minutes.
5.Plot the number of viable cells against the antibiotic concentration. This curve is the dose-response curve or kill curve. The lowest concentration of the antibiotic that kills all the cells in the chosen time period is then used for the stable selection.

Find additional tips, troubleshooting help, and resources within our Transfection Support Center.

What is the main advantage of viral transduction over transfection?

Transfection does not work for certain cell types such as non-dividing cells, whereas viral transduction works for dividing as well as non-dividing cells, such as neuronal cells that are hard to transfect.

Find additional tips, troubleshooting help, and resources within our Transfection Support Center.

What is the main advantage of lipid-mediated transfection over calcium phosphate-mediated transfection?

The main advantage of lipid-mediated transfection is the higher transfection efficiency that can be achieved with cell types that cannot be transfected using calcium phosphate. Calcium phosphate is prone to variability due to its sensitivity to slight changes in pH, temperature, and buffer salt concentrations. Calcium phosphate may also be cytotoxic to many cell types, especially primary cells. Further, lipid-mediated transfection can be used to deliver DNA ranging from oligos to large DNA, and can also deliver RNA and protein.

Find additional tips, troubleshooting help, and resources within our Transfection Support Center.

What is the main difference between transient and stable transfection?

During transient transfection the exogenous DNA does not integrate into the host genome, as a result some DNA is lost with every subsequent cell division. The expression is short-lived (maximum of 7-10 days) but the level of expression is high, since up to hundreds of copies of the DNA may be delivered into the cell. In stable transfection, under antibiotic selection pressure, the DNA integrates into the host cell genome and is passed onto their daughter cells during cell division. The expression is thus sustained as long as the selection pressure is maintained. The expression level is low since only 1-2 copies of the DNA may be integrated per cell. Transfection efficiency in a stable transfection is about 1-10% of that in a transient transfection.

Find additional tips, troubleshooting help, and resources within our Transfection Support Center.

引用および参考文献 (29)

引用および参考文献
Abstract
A Novel Homeobox Protein which Recognizes a TGT Core and Functionally Interferes with a Retinoid-responsive Motif
Authors:Bertolino, Reimund, Wildt-Perinic andClerc
Journal:Nature
PubMed ID:1899916
'The synapsins are a family of closely related phosphoproteins (termed synapsins Ia, Ib, IIa and IIb) associated with synaptic vesicles and implicated in the short-term regulation of neurotransmitter release from nerve endings. During development, expression of the synapsins correlates temporally with synapse formation, but there has been no direct evidence ... More
Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen.
Authors: Watanabe H; Pan Z Q; Schreiber-Agus N; DePinho R A; Hurwitz J; Xiong Y;
Journal:Proc Natl Acad Sci U S A
PubMed ID:9465025
'Proper control of the mammalian cell cycle requires the function of cyclin-dependent kinase (CDK) inhibitors. The p21 family currently includes three distinct genes, p21, p27(Kip1), and p57(Kip2), that share a common N-terminal domain for binding to and inhibiting the kinase activity of CDK-cyclin complexes. The p21 protein also binds to ... More
Ligand binding to macrophage scavenger receptor-A induces urokinase- type plasminogen activator expression by a protein kinase-dependent signaling pathway.
Authors:Hsu HY, Hajjar DP, Khan KM, Falcone DJ
Journal:J Biol Chem
PubMed ID:9422792
'Macrophage scavenger receptor-type A (MSR-A) has been implicated in the transmission of cell signals and the regulation of diverse cellular functions (Falcone, D. J., and Ferenc, M. J. (1988) J. Cell. Physiol. 135, 387-396; Falcone, D. J., McCaffrey, T. A., and Vergilio, J. A. (1991) J. Biol. Chem. 266, 22726-22732; ... More
A new cationic liposome reagent mediating nearly quantitative transfection of animal cells.
Authors:Rose JK, Buonocore L, Whitt MA
Journal:Biotechniques
PubMed ID:1867862
'One of the most efficient systems for the expression of genes in the cytoplasm of animal cells utilizes a recombinant vaccinia virus encoding the bacteriophage T7 RNA polymerase. Cells infected with this virus are transfected with plasmid DNAs containing the gene to be expressed under T7 promoter control. The major ... More
Interaction between growth arrest-DNA damage protein 34 and Src kinase Lyn negatively regulates genotoxic apoptosis.
Authors: Grishin A V; Azhipa O; Semenov I; Corey S J;
Journal:Proc Natl Acad Sci U S A
PubMed ID:11517336
'Genotoxic stresses activate intracellular signaling molecules, which lead to growth arrest, DNA repair, and/or apoptosis. Among these molecules are the growth arrest and DNA damage protein 34 (GADD34) and the Src-related protein tyrosine kinase Lyn. Here, we report that these two proteins physically and functionally interact to regulate DNA damage-induced ... More