LanthaScreen™ TR-FRET PPAR gamma Coactivator Assay Kit, goat
Product Image

LanthaScreen™ TR-FRET PPAR gamma Coactivator Assay Kit, goat

このキットには、ヤギTb抗GST抗体が含まれています。その他のキット内容はキットA15126と同じです。LanthaScreen™ TR-FRET PPARγコアクチベーターアッセイキットは、リガンド依存性コアクチベーターリクルートのアゴニストである潜在的なPPAR γリガンドの高感度かつ確実なハイスループットスクリーニングを実現します。このキットは、テルビウム詳細を見る
製品番号(カタログ番号)数量
PV4548800 x 20 μL assays
製品番号(カタログ番号) PV4548
価格(JPY)
175,500
Online offer
Ends: 27-Mar-2026
292,500
割引額 117,000 (40%)
Each
お問い合わせください ›
数量:
800 x 20 μL assays
このキットには、ヤギTb抗GST抗体が含まれています。その他のキット内容はキットA15126と同じです。

LanthaScreen™ TR-FRET PPARγコアクチベーターアッセイキットは、リガンド依存性コアクチベーターリクルートのアゴニストである潜在的なPPAR γリガンドの高感度かつ確実なハイスループットスクリーニングを実現します。このキットは、テルビウム(Tb)標識抗GST抗体、フルオレセイン標識コアクチベータペプチド、およびグルタチオンS-トランスフェラーゼ(GST)でタグ付けしたペルオキシソーム増殖剤活性化レセプター(PPAR)ガンマリガンド結合ドメイン(PPAR γ-LBD)を、均一な混合&測定アッセイフォーマットで使用しています。

アゴニストモード
LanthaScreen™ TR-FRETペルオキシソーム増殖剤応答性ガンマ受容体コアクチベーターアッセイをアゴニストモードで実行すると(アゴニスト化合物を同定するため)、PPAR gamma-LBDがリガンド試験化合物に追加され、その後にフルオレセインコアクチベータペプチドとTB抗GST抗体が混合して追加されます。室温でのインキュベーション期間後、TR-FRET 520:495発光比が計算され、その比率を使って化合物の線量反応曲線からEC50を決定します。このリガンドEC50は、PPAR gammaコアクチベータペプチド相互作用の生物学に基づく複合値で、受容体への結合、配座変化への影響、コアクチベータペプチドの動員に必要なリガンドの量を表します(図1)。

アンタゴニストモード
LanthaScreen™ TR-FRETペルオキシソーム増殖剤応答性ガンマ受容体コアクチベーターアッセイをアンタゴニストモードで実行すると(アンタゴニスト化合物を同定するため)、PPAR gamma-LBDがリガンド試験化合物に追加され、その後にアゴニストとフルオレセインコアクチベータペプチドとTB抗GST抗体が混合して追加されます。このモードで使用されるアゴニストの濃度は、最初にアゴニストモードでアッセイを実行したときに決定されるEC80濃度です(図2)。

含有量および保存:
LanthaScreen™ TR-FRET PPARγコアクチベーターアッセイキットには、PPAR gamma-LBD(GST)タンパク質、蛍光標識TRAP220/ DRIP-2コアクチベータペプチド、TB-抗GST抗体、バッファーが含まれています。コンポーネントはアッセイプロトコルに示されているようにして保存します(-80°C、-20°C、または+4°C)。
研究用にのみ使用できます。診断用には使用いただけません。
仕様
アッセイ入力生化学的コレギュレーター相互作用
検出法蛍光
使用対象(アプリケーション)共因子相互作用アッセイ、TR-FRET
使用対象 (装置)マイクロプレートリーダー
遺伝子ID(Entrez)5468
リガンドPPARガンマ
No. of Assays800 x 20 μL assays
パッケージ384ウェルプレート
製品タイプTR-FRET PPARガンマコアクチベーターアッセイキット
数量800 x 20 μL assays
結果エンドポイント
出荷条件ドライアイス
標的入力PPARG、PPAR gamma、NR1C3
コンジュゲートTb(テルビウム)
製品ラインLanthaScreen
Unit SizeEach
組成および保存条件
超低温フリーザー(-68~-85℃)に保存。

よくあるご質問(FAQ)

How does the LanthaScreen technology compare to other TR-FRET assay formats?

We performed a comparison between the LanthaScreen assay and other commercially available TR-FRET assays from 2 different suppliers for the PKC kinase target. Our data revealed that the assays performed comparably, but that the LanthaScreen assay was simpler to optimize and contained fewer components that required optimization. The LanthaScreen assay is a two component system, whereas the other assay formats utilize a trimolecular mechanism which is more time consuming to optimize and has added costs.

For my kinase assay, can I pre-mix the Tb-Ab and EDTA so that I can stop the kinase assay and begin detection with a single reagent addition?

Yes, this is possible depending on the concentrations of reagents used and the time for which they are mixed. We recommend developing and optimizing the assay by using separate reagent additions, because this method will work under the widest range of conditions. Once the assay is optimized, the performance of the assay using pre-mixed antibody and EDTA can be evaluated. We have successfully developed robust assays in which the antibody and EDTA were pre-mixed and then stored overnight at 4 degrees C prior to use the following day. A loss of signal intensity was observed in this case, however, by using the ratiometric readout, this effect was minimal.

Are the LanthaScreen reagents stable to interference from Mg2+, Mn2+, and EDTA?

The chelate is completely stable to Mg2+. The amount of Mn2+ or EDTA that the chelate can tolerate depends largely on how long they are mixed together and the combination of additives used in the reaction. If a reaction requires either Mg2+ or Mn2+ for activation, it is best to stop the reaction by adding an equimolar amount (or slight excess) of EDTA to chelate the metal ions present. This will then essentially eliminate any interference on the terbium chelate by EDTA or Mn2+. Regardless, when LanthaScreen assays are performed using a ratiometric readout (division of the acceptor signal by the donor signal), any interference caused by Mn2+ or EDTA is largely cancelled out.

What is the optimal and/or maximum distance for a Tb-fluorescein pair?

The Förster radius, the distance at which energy transfer efficiency is half-maximal, is around 50-angstroms for the terbiumÆ fluorescein pair. However, the Förster radius does not give a complete indication of energy transfer efficiency when using long lifetime fluorophores such as terbium chelates. When using terbium chelates, energy transfer efficiency is determined by the distance of closest approach between the donor and acceptor during the excited state lifetime of the donor. In many assay systems, such as those designed using antibodies or peptides, there is a large degree of conformational freedom that allows the donor and acceptor to approach one another, effectively enhancing the FRET signal. Additionally, it is important to note that as the donor/acceptor pair approach one another and the efficiency of energy transfer increases, the fluorescent lifetime decreases to a comparable extent. From a practical standpoint, this means that when energy transfer is extremely efficient, FRET cannot be measured in time-resolved mode (because the energy transfer is complete before the measurement is made). This is another reason why TR-FRET assays based around terbium-labeled antibodies or streptavidin perform so well, because there exist a range of donor/acceptor distances, several of which are optimal for measuring FRET.

How many LanthaScreen assays can I run with a given amount of substrate?

It varies, depending on the concentration of substrate used in the assay. But in general, for the peptide substrates, 1 mg of peptide will run approximately 250,000 wells (10 µL reaction, 200 nM peptide). For Poly GT or GAT, the 1 mL of 30 µM size we sell is approximately 1 mg. With these substrates, 1 mL of 30 µM will run approximately 16,700 wells (10 µL reaction, 200 µM substrate).

20 nmol of our physiological protein substrates is sufficient for approximately 10,000 wells (10 µL reaction, 200 µM substrate).

引用および参考文献 (3)

引用および参考文献
Abstract
Amorfrutins are potent antidiabetic dietary natural products.
Authors:Weidner C, de Groot JC, Prasad A, Freiwald A, Quedenau C, Kliem M, Witzke A, Kodelja V, Han CT, Giegold S, Baumann M, Klebl B, Siems K, Müller-Kuhrt L, Schürmann A, Schüler R, Pfeiffer AF, Schroeder FC, Büssow K, Sauer S,
Journal:Proc Natl Acad Sci U S A
PubMed ID:22509006
'Given worldwide increases in the incidence of obesity and type 2 diabetes, new strategies for preventing and treating metabolic diseases are needed. The nuclear receptor PPARγ (peroxisome proliferator-activated receptor gamma) plays a central role in lipid and glucose metabolism; however, current PPARγ-targeting drugs are characterized by undesirable side effects. Natural ... More
Simultaneous monitoring of discrete binding events using dual-acceptor terbium-based LRET.
Authors:Kupcho KR, Stafslien DK, DeRosier T, Hallis TM, Ozers MS, Vogel KW,
Journal:J Am Chem Soc
PubMed ID:17929812
Covalent peroxisome proliferator-activated receptor gamma adduction by nitro-fatty acids: selective ligand activity and anti-diabetic signaling actions.
Authors:Schopfer FJ, Cole MP, Groeger AL, Chen CS, Khoo NK, Woodcock SR, Golin-Bisello F, Motanya UN, Li Y, Zhang J, Garcia-Barrio MT, Rudolph TK, Rudolph V, Bonacci G, Baker PR, Xu HE, Batthyany CI, Chen YE, Hallis TM, Freeman BA,
Journal:J Biol Chem
PubMed ID:20097754
The peroxisome proliferator-activated receptor-gamma (PPARgamma) binds diverse ligands to transcriptionally regulate metabolism and inflammation. Activators of PPARgamma include lipids and anti-hyperglycemic drugs such as thiazolidinediones (TZDs). Recently, TZDs have raised concern after being linked with increased risk of peripheral edema, weight gain, and adverse cardiovascular events. Most reported endogenous PPARgamma ... More