LanthaScreen™ TR-FRET PPAR alpha Competitive Binding Assay Kit, goat
Product Image

LanthaScreen™ TR-FRET PPAR alpha Competitive Binding Assay Kit, goat

このキットには、ヤギTb抗GST抗体が含まれています。その他のキット内容はキットA15143と同じです。LanthaScreen™ TR-FRET PPARアルファ競合結合アッセイは、ペルオキシソーム増殖剤活性化受容体アルファ(PPARアルファ)のリガンドのハイスループットスクリーニング(HTS詳細を見る
製品番号(カタログ番号)数量
PV4892400 x 40 μL
製品番号(カタログ番号) PV4892
価格(JPY)
293,600
Each
お問い合わせください ›
数量:
400 x 40 μL
このキットには、ヤギTb抗GST抗体が含まれています。その他のキット内容はキットA15143と同じです。

LanthaScreen™ TR-FRET PPARアルファ競合結合アッセイは、ペルオキシソーム増殖剤活性化受容体アルファ(PPARアルファ)のリガンドのハイスループットスクリーニング(HTS)に、高感度で堅牢な方法を提供します。このキットは、テルビウム標識抗GST抗体、蛍光小分子pan-PPARリガンド(Fluormone™ Pan-PPAR Green)、およびグルタチオンS-トランスフェラーゼ(GST)でタグ付けしたヒトPPARαリガンド結合ドメイン(LBD)を、均一な混合&測定アッセイフォーマットで提供しています。

アッセイには:
LanthaScreen™ TR-FRET PPARα競合結合アッセイを実施する場合、リガンド試験化合物にFluormone™ Pan-PPAR Greenを添加した後、PPARα-LBDとテルビウム抗GST抗体の混合物を添加します。Fluormone™ Pan-PPAR GreenがPPAR alphaに結合すると、テルビウム標識抗体からトレーサーへのエネルギー移動が発生し、TR-FRET比の上昇が観測されます。PPAR alphaへの競合リガンド結合は、トレーサーを置換する試験化合物の機能により検出されます。結果として、抗体とトレーサー間のFRETが失われます。室温でのインキュベーション期間後、520 nm/495 nm TR-FRET比が計算され、その比率を使って化合物の線量反応曲線からIC50を決定できます(図1)。このタイプの結合アッセイは、放射性の取り扱いを排除し均一な“添加のみ”のフォーマットを可能にする点を除いて、放射性リガンドベースのアッセイに類似しています。
研究用にのみ使用できます。診断用には使用いただけません。
仕様
アッセイ入力生化学的競合結合
検出法蛍光
使用対象(アプリケーション)競合結合アッセイ、TR-FRET
使用対象 (装置)マイクロプレートリーダー
リガンドPan-PPAR
パッケージ384ウェルプレート
製品タイプTR-FRET PPAR Alpha Competitive Binding Assay Kit
数量400 x 40 μL
結果エンドポイント
出荷条件ドライアイス
標的入力PPARA、PPAR α、NR1C1
コンジュゲートTb(テルビウム)
製品ラインLanthaScreen
Unit SizeEach
組成および保存条件
LanthaScreen™ TR-FRET PPAR alpha Competitive Binding Assay Kitには、PPAR alpha-LBD(GST)タンパク質、Fluormone™ Pan-PPAR Green、テルビウム標識抗GST抗体、およびバッファーが含まれています。コンポーネントはアッセイプロトコルに示されているようにして保存します(-80°C、-20°C、または+4°C)。

よくあるご質問(FAQ)

How does the LanthaScreen technology compare to other TR-FRET assay formats?

We performed a comparison between the LanthaScreen assay and other commercially available TR-FRET assays from 2 different suppliers for the PKC kinase target. Our data revealed that the assays performed comparably, but that the LanthaScreen assay was simpler to optimize and contained fewer components that required optimization. The LanthaScreen assay is a two component system, whereas the other assay formats utilize a trimolecular mechanism which is more time consuming to optimize and has added costs.

For my kinase assay, can I pre-mix the Tb-Ab and EDTA so that I can stop the kinase assay and begin detection with a single reagent addition?

Yes, this is possible depending on the concentrations of reagents used and the time for which they are mixed. We recommend developing and optimizing the assay by using separate reagent additions, because this method will work under the widest range of conditions. Once the assay is optimized, the performance of the assay using pre-mixed antibody and EDTA can be evaluated. We have successfully developed robust assays in which the antibody and EDTA were pre-mixed and then stored overnight at 4 degrees C prior to use the following day. A loss of signal intensity was observed in this case, however, by using the ratiometric readout, this effect was minimal.

Are the LanthaScreen reagents stable to interference from Mg2+, Mn2+, and EDTA?

The chelate is completely stable to Mg2+. The amount of Mn2+ or EDTA that the chelate can tolerate depends largely on how long they are mixed together and the combination of additives used in the reaction. If a reaction requires either Mg2+ or Mn2+ for activation, it is best to stop the reaction by adding an equimolar amount (or slight excess) of EDTA to chelate the metal ions present. This will then essentially eliminate any interference on the terbium chelate by EDTA or Mn2+. Regardless, when LanthaScreen assays are performed using a ratiometric readout (division of the acceptor signal by the donor signal), any interference caused by Mn2+ or EDTA is largely cancelled out.

What is the optimal and/or maximum distance for a Tb-fluorescein pair?

The Förster radius, the distance at which energy transfer efficiency is half-maximal, is around 50-angstroms for the terbiumÆ fluorescein pair. However, the Förster radius does not give a complete indication of energy transfer efficiency when using long lifetime fluorophores such as terbium chelates. When using terbium chelates, energy transfer efficiency is determined by the distance of closest approach between the donor and acceptor during the excited state lifetime of the donor. In many assay systems, such as those designed using antibodies or peptides, there is a large degree of conformational freedom that allows the donor and acceptor to approach one another, effectively enhancing the FRET signal. Additionally, it is important to note that as the donor/acceptor pair approach one another and the efficiency of energy transfer increases, the fluorescent lifetime decreases to a comparable extent. From a practical standpoint, this means that when energy transfer is extremely efficient, FRET cannot be measured in time-resolved mode (because the energy transfer is complete before the measurement is made). This is another reason why TR-FRET assays based around terbium-labeled antibodies or streptavidin perform so well, because there exist a range of donor/acceptor distances, several of which are optimal for measuring FRET.

How many LanthaScreen assays can I run with a given amount of substrate?

It varies, depending on the concentration of substrate used in the assay. But in general, for the peptide substrates, 1 mg of peptide will run approximately 250,000 wells (10 µL reaction, 200 nM peptide). For Poly GT or GAT, the 1 mL of 30 µM size we sell is approximately 1 mg. With these substrates, 1 mL of 30 µM will run approximately 16,700 wells (10 µL reaction, 200 µM substrate).

20 nmol of our physiological protein substrates is sufficient for approximately 10,000 wells (10 µL reaction, 200 µM substrate).