LanthaScreen™ TR-FRET PPAR gamma Competitive Binding Assay Kit, goat
Product Image

LanthaScreen™ TR-FRET PPAR gamma Competitive Binding Assay Kit, goat

このキットにはGoat Tb抗GST抗体が含まれています。他のキットコンポーネントはキットA15145と同じです。LanthaScreen™ TR-FRET PPARγ競合結合アッセイは、ペルオキシソーム増殖剤活性化受容体γ(PPARγ)のリガンドのハイスループットスクリーニング(HTS詳細を見る
製品番号(カタログ番号)数量
PV4894400 x 40 μL
製品番号(カタログ番号) PV4894
価格(JPY)
174,000
온라인 행사
Ends: 27-Mar-2026
290,000
割引額 116,000 (40%)
Each
お問い合わせください ›
数量:
400 x 40 μL
このキットにはGoat Tb抗GST抗体が含まれています。他のキットコンポーネントはキットA15145と同じです。

LanthaScreen™ TR-FRET PPARγ競合結合アッセイは、ペルオキシソーム増殖剤活性化受容体γ(PPARγ)のリガンドのハイスループットスクリーニング(HTS)に、高感度で堅牢な方法を提供します。このキットは、テルビウム標識抗GST抗体、蛍光小分子pan-PPARリガンド(Fluormone™ Pan-PPAR Green)、およびヒトPPARγリガンド結合ドメイン(LBD)を使用しています。これらは、グルタチオンS-トランスフェラーゼ(GST)でタグ付けされ、均一なmix-and-readアッセイフォーマットで提供されています。

アッセイ:
LanthaScreen™ TR-FRET PPARγ競合結合アッセイを実施する場合、リガンド試験化合物にFluormone™ Pan-PPAR Greenを添加した後、PPARγ-LBDとテルビウム抗GST抗体の混合物を添加します。Fluormone™ Pan-PPAR GreenがPPARγに結合すると、テルビウム標識抗体からトレーサーへのエネルギー移動が発生し、観測されるTR-FRET比が高くなります。PPARγへの競合リガンド結合は、トレーサーを置換する試験化合物の機能により検出され、抗体とトレーサーの間でFRETが失われます。室温でのインキュベーション期間後、520 nm/495 nm TR-FRET比が計算され、その比率を使って化合物の線量反応曲線からIC50を決定できます(図1)。このタイプの結合アッセイは、放射活性の処理を排除して均一で“付加のみ”のフォーマットを可能にする点を除いて、放射性リガンドベースのアッセイに類似しています。
研究用にのみ使用できます。診断用には使用いただけません。
仕様
アッセイ入力生化学的競合結合
検出法蛍光
使用対象(アプリケーション)競合結合アッセイ、TR-FRET
使用対象 (装置)マイクロプレートリーダー
リガンドPan-PPAR
パッケージ384ウェルプレート
製品タイプTR-FRET PPAR Gamma Competitive Binding Assay Kit
数量400 x 40 μL
結果エンドポイント
出荷条件ドライアイス
標的入力PPARG、PPAR gamma、NR1C3
コンジュゲートTb(テルビウム)
製品ラインLanthaScreen
Unit SizeEach
組成および保存条件
LanthaScreen™ TR-FRET PPAR gamma Competitive Binding Assay Kitには、PPARγLBD(GST)タンパク質、Fluormone™ Pan-PPAR Green、テルビウム標識抗GST抗体、およびバッファーが含まれています。コンポーネントはアッセイプロトコルに示されているようにして保存します(-80°C、-20°C、または+4°C)。

よくあるご質問(FAQ)

How does the LanthaScreen technology compare to other TR-FRET assay formats?

We performed a comparison between the LanthaScreen assay and other commercially available TR-FRET assays from 2 different suppliers for the PKC kinase target. Our data revealed that the assays performed comparably, but that the LanthaScreen assay was simpler to optimize and contained fewer components that required optimization. The LanthaScreen assay is a two component system, whereas the other assay formats utilize a trimolecular mechanism which is more time consuming to optimize and has added costs.

For my kinase assay, can I pre-mix the Tb-Ab and EDTA so that I can stop the kinase assay and begin detection with a single reagent addition?

Yes, this is possible depending on the concentrations of reagents used and the time for which they are mixed. We recommend developing and optimizing the assay by using separate reagent additions, because this method will work under the widest range of conditions. Once the assay is optimized, the performance of the assay using pre-mixed antibody and EDTA can be evaluated. We have successfully developed robust assays in which the antibody and EDTA were pre-mixed and then stored overnight at 4 degrees C prior to use the following day. A loss of signal intensity was observed in this case, however, by using the ratiometric readout, this effect was minimal.

Are the LanthaScreen reagents stable to interference from Mg2+, Mn2+, and EDTA?

The chelate is completely stable to Mg2+. The amount of Mn2+ or EDTA that the chelate can tolerate depends largely on how long they are mixed together and the combination of additives used in the reaction. If a reaction requires either Mg2+ or Mn2+ for activation, it is best to stop the reaction by adding an equimolar amount (or slight excess) of EDTA to chelate the metal ions present. This will then essentially eliminate any interference on the terbium chelate by EDTA or Mn2+. Regardless, when LanthaScreen assays are performed using a ratiometric readout (division of the acceptor signal by the donor signal), any interference caused by Mn2+ or EDTA is largely cancelled out.

What is the optimal and/or maximum distance for a Tb-fluorescein pair?

The Förster radius, the distance at which energy transfer efficiency is half-maximal, is around 50-angstroms for the terbiumÆ fluorescein pair. However, the Förster radius does not give a complete indication of energy transfer efficiency when using long lifetime fluorophores such as terbium chelates. When using terbium chelates, energy transfer efficiency is determined by the distance of closest approach between the donor and acceptor during the excited state lifetime of the donor. In many assay systems, such as those designed using antibodies or peptides, there is a large degree of conformational freedom that allows the donor and acceptor to approach one another, effectively enhancing the FRET signal. Additionally, it is important to note that as the donor/acceptor pair approach one another and the efficiency of energy transfer increases, the fluorescent lifetime decreases to a comparable extent. From a practical standpoint, this means that when energy transfer is extremely efficient, FRET cannot be measured in time-resolved mode (because the energy transfer is complete before the measurement is made). This is another reason why TR-FRET assays based around terbium-labeled antibodies or streptavidin perform so well, because there exist a range of donor/acceptor distances, several of which are optimal for measuring FRET.

How many LanthaScreen assays can I run with a given amount of substrate?

It varies, depending on the concentration of substrate used in the assay. But in general, for the peptide substrates, 1 mg of peptide will run approximately 250,000 wells (10 µL reaction, 200 nM peptide). For Poly GT or GAT, the 1 mL of 30 µM size we sell is approximately 1 mg. With these substrates, 1 mL of 30 µM will run approximately 16,700 wells (10 µL reaction, 200 µM substrate).

20 nmol of our physiological protein substrates is sufficient for approximately 10,000 wells (10 µL reaction, 200 µM substrate).

引用および参考文献 (2)

引用および参考文献
Abstract
Amorfrutins are potent antidiabetic dietary natural products.
Authors:Weidner C, de Groot JC, Prasad A, Freiwald A, Quedenau C, Kliem M, Witzke A, Kodelja V, Han CT, Giegold S, Baumann M, Klebl B, Siems K, Müller-Kuhrt L, Schürmann A, Schüler R, Pfeiffer AF, Schroeder FC, Büssow K, Sauer S,
Journal:Proc Natl Acad Sci U S A
PubMed ID:22509006
'Given worldwide increases in the incidence of obesity and type 2 diabetes, new strategies for preventing and treating metabolic diseases are needed. The nuclear receptor PPARγ (peroxisome proliferator-activated receptor gamma) plays a central role in lipid and glucose metabolism; however, current PPARγ-targeting drugs are characterized by undesirable side effects. Natural ... More
Covalent peroxisome proliferator-activated receptor gamma adduction by nitro-fatty acids: selective ligand activity and anti-diabetic signaling actions.
Authors:Schopfer FJ, Cole MP, Groeger AL, Chen CS, Khoo NK, Woodcock SR, Golin-Bisello F, Motanya UN, Li Y, Zhang J, Garcia-Barrio MT, Rudolph TK, Rudolph V, Bonacci G, Baker PR, Xu HE, Batthyany CI, Chen YE, Hallis TM, Freeman BA,
Journal:J Biol Chem
PubMed ID:20097754
The peroxisome proliferator-activated receptor-gamma (PPARgamma) binds diverse ligands to transcriptionally regulate metabolism and inflammation. Activators of PPARgamma include lipids and anti-hyperglycemic drugs such as thiazolidinediones (TZDs). Recently, TZDs have raised concern after being linked with increased risk of peripheral edema, weight gain, and adverse cardiovascular events. Most reported endogenous PPARgamma ... More