Rhod-2, AM, cell permeant
Rhod-2, AM, cell permeant
Invitrogen™

Rhod-2, AM, cell permeant

標識カルシウム指示薬は、Ca2+と結合すると蛍光が増加する分子です。高レベルの自己蛍光を持つ細胞や組織中のCa2+測定や、光受容体や光活性化可能なキレート剤によって生成されるCa2+放出の検出など、多くのカルシウム信号伝達研究に使用されています。培養細胞を含むディッシュに溶解インジケーターを直接添加することで、これらカルシウムインジケーターのAMエステル型を細胞に添加できます。これらの細胞からの蛍光シグナルは、一般的に蛍光顕微鏡法を用いて測定されます。カルシウムインジケータ詳細を見る
製品番号(カタログ番号)数量
R1245MP20 x 50 μg
R12441mg
製品番号(カタログ番号) R1245MP
価格(JPY)
129,500
Each
お問い合わせください ›
数量:
20 x 50 μg
標識カルシウム指示薬は、Ca2+と結合すると蛍光が増加する分子です。高レベルの自己蛍光を持つ細胞や組織中のCa2+測定や、光受容体や光活性化可能なキレート剤によって生成されるCa2+放出の検出など、多くのカルシウム信号伝達研究に使用されています。培養細胞を含むディッシュに溶解インジケーターを直接添加することで、これらカルシウムインジケーターのAMエステル型を細胞に添加できます。これらの細胞からの蛍光シグナルは、一般的に蛍光顕微鏡法を用いて測定されます。

カルシウムインジケータ(AMエステル)の仕様:
•ラベル(Ca2+–結合型のEx/EM):Rhod-2(552/581 nm)
•結合時の蛍光強度の増加Ca2+:バッファー中の Mg 2+がない場合、Ca2+に対して>100倍Kd
• Kd:約570 nM
• Ca2+結合時に、波長のわずかな変化を伴いながら、蛍光強度が増加


TPENを使用した重金属陽イオンの制御
さらに、BAPTAベースのインジケーターはさまざまな重金属陽イオン(Mn2+、Zn2+、Pb2+など)に結合し、Ca2+よりもはるかに高い親和性を示します。これらのイオンの存在によって引き起こさ れるカルシウム測定値への摂動は、重金属選択性キレート剤であるTPENを使用して制御できます。

蛍光カルシウム指示薬の選択肢を拡大
™当社は、さまざまな実験シナリオで使用するMolecular Probesカルシウム指示薬を幅広く取り揃えています。たとえば、漏出の低減や区画化のためのデキストラン型や、高振幅カルシウムTransitiveを検出するためのBAPTAコンジュゲートなどです。詳細については、Molecular Probesハンドブックの「可視光で励起された蛍光Ca2+インジケータ」—セクション19.3™を参照してください。

UV-exitable Ca2+指示薬、タンパク質ベースCa2+指示薬、Ca2+指示薬のコンジュゲート用、その他の金属イオン(Mg2+、Zn2+)の蛍光ベースのインジケータ については、Molecular Probesハンドブック™のCa 2+、Mg 2+、Zn 2+およびその他の金属イオンのインジケータ—第19章を参照してください。

研究用途にのみご使用ください。ヒトまたは動物の治療もしくは診断目的には使用できません。
研究用にのみ使用できます。診断用には使用いただけません。
仕様
検出法蛍光
染色剤タイプ蛍光色素ベース
数量20 x 50 μg
出荷条件室温
使用対象(アプリケーション)細胞の生存率と増殖
使用対象 (装置)蛍光顕微鏡
製品タイプ染色
Unit SizeEach
組成および保存条件
フリーザー(-5℃~-30℃)に保存し、遮光してください。

よくあるご質問(FAQ)

What are the excitation/emission maxima for Rhod-2, AM, cell permeant (Cat. No. R1244, R1245MP)?

Rhod-2, AM, cell permeant (Cat. No. R1244, R1245MP) exhibits >100-fold increase in fluorescence intensity upon binding Ca2+. The excitation/emission maxima for Rhod-2, AM, cell permeant when bound to Ca2+ are 552/581 nm.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What cellular processes can be analyzed with a flow cytometer?

-Calcium flux: Each of the Oregon Green calcium indicators binds intracellular calcium with increasing affinity, providing a sensitivity range to match many applications. Oregon Green probes emit green fluorescence at resting levels of Ca2+ and increase their fluorescence intensity 14-fold with increasing Ca2+ concentration. The cell-permeant formulation (Cat. No. O6807) can be loaded in cell media and is compatible with flow cytometry.
-Rhodamine-based calcium indicators comprise a range of probes for large or small changes in Ca2+ concentration. They exhibit a 50-fold increase in fluorescence upon calcium binding and offer a range of wavelengths that can be used in conjunction with GFP or green-fluorescent dyes for multiplexing. Rhod-2, AM (Cat. No. R1245MP), in particular, localizes to mitochondria and can be used with flow cytometry.
-Membrane potential: A distinctive feature of the early stages of apoptosis is the disruption of the mitochondria, including changes in membrane and redox potential. We offer a range of products specifically designed to assay mitochondrial membrane potential in live cells by flow cytometry, with minimal disruption of cellular function. The MitoProbe family of mitochondrial stains (Cat. Nos. M34150, M34151, and M34152) provide quick, easy, and reliable flow cytometric detection of the loss of mitochondrial membrane potential that occurs during apoptosis. MitoTracker dyes (Cat. Nos. M7510 and M7512) are membrane potential-dependent probes for staining mitochondria in live cells. The staining pattern of MitoTracker dyes is retained throughout subsequent flow cytometry immunocytochemistry, DNA end labeling, in situ hybridization, or counterstaining steps. The Mitochondrial Permeability Transition Pore Assay (Cat. No. M34153) provides a more direct method of measuring mitochondrial permeability transition pore opening than assays relying on mitochondrial membrane potential alone. The mitochondrial permeability transition pore (MPTP) is a non-specific channel formed by components from the inner and outer mitochondrial membranes, and appears to be involved in the release of mitochondrial components during cell death.
-Phagocytosis: In phagocytosis, cells internalize particulate matter such as microorganisms, and this process is important for immune responses and during the clearance of apoptotic cells. Probes for studying phagocytosis include BioParticles indicators—bacteria and yeast labeled with fluorescent dyes.
-Tracking phagocytosis using a quench/wash-based assay can report on simple uptake, or a pH indicator can be used to monitor stages in the pathway. We have no-wash assays labeled with pHrodo Red or Green (Cat. Nos. A10010, P35361, P35364, P35365, P35366, and P35367) and no-wash assays for whole blood (Cat. Nos. A10025, A10026, P35381, and P35382), all suitable for flow cytometry.
-pH changes: Sensitive pH determinations can be made in a physiological range using either fluorescent intensity or ratiometric measurements. pHrodo dyes (Cat. Nos. P35373 and P35372) provide signal intensity modulation from pH 2 to pH 9 and with a choice of fluorescent wavelengths. Tracking internalization of fluorescent dextran is a routine method for analyzing pH changes in cellular compartments. Dextran conjugates of pHrodo dyes (Cat. Nos. P35368 and P10361) provide the most complete solution by allowing discrimination of vesicles from early endosomes to lysosomes, with no quench or wash required.
-Reactive oxygen species: Cells that are environmentally stressed usually contain greatly increased levels of reactive oxygen species (ROS). CellROX reagents are fluorogenic probes developed for the detection and quantitation of ROS in live cells. These cell-permeant reagents are non-fluorescent or very weakly fluorescent in the reduced state; however, when oxidized, they become brightly fluorescent and remain localized within the cell. We offer CellROX Green (Cat. No. C10492), CellROX Orange (Cat. No. C10493), and CellROX Deep Red (Cat. No. C10491) Assay Kits validated for flow cytometry.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Why don't I see a significant change in signal for my live-cell fluorescent indicator dye?

Regardless of the type of live-cell indicator dye (e.g., calcium indicators, pH indicator, metal ion indicators), make sure there is no serum during the loading step, which can prematurely cleave dyes with AM esters and bind dyes non-specifically. Always optimize the dye concentration and staining time with a positive control before you run your test samples, to give the best signal-to-background. Always run a positive control with a buffer containing free ions of known concentration and an ionophore to open pores to those ions (for instance, for calcium indicators like Fluo-4 AM, this would include a buffer with added calcium combined with calcimycin, or for pH indicators, buffers of different pHs combined with nigericin). Reactive oxygen indicators, such as CellROX Green or H2DCFDA would require a cellular reactive oxygen species (ROS) stimulant as a positive control, such as menadione. Finally, make sure your imaging system has a sensitive detector. Plate readers, for instance, have much lower detector efficiency over background, compared to microscopy or flow cytometry.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

引用および参考文献 (148)

引用および参考文献
Abstract
Functional implications of calcium permeability of the channel formed by pannexin 1.
Authors:Vanden Abeele F,Bidaux G,Gordienko D,Beck B,Panchin YV,Baranova AV,Ivanov DV,Skryma R,Prevarskaya N
Journal:The Journal of cell biology
PubMed ID:16908669
Although human pannexins (PanX) are homologous to gap junction molecules, their physiological function in vertebrates remains poorly understood. Our results demonstrate that overexpression of PanX1 results in the formation of Ca(2+)-permeable gap junction channels between adjacent cells, thus, allowing direct intercellular Ca(2+) diffusion and facilitating intercellular Ca(2+) wave propagation. More ... More
Spatially organised mitochondrial calcium uptake through a novel pathway in chick neurones.
Authors:Coatesworth W, Bolsover S
Journal:Cell Calcium
PubMed ID:16338004
'A brief depolarisation of chick sensory neurones evokes a calcium increase in mitochondria that peaks 1-2s after the depolarisation event and then decays over tens of seconds. Peripheral mitochondria take up more calcium than do central ones, even when the cytosolic calcium increase is spatially homogeneous. The calcium influx into ... More
Feedback inhibition of sodium/calcium exchange by mitochondrial calcium accumulation.
Authors:Opuni K, Reeves JP
Journal:J Biol Chem
PubMed ID:10801871
'Chinese hamster ovary cells expressing the bovine cardiac Na(+)/Ca(2+) exchanger were subjected to two periods of 5 and 3 min, respectively, during which the extracellular Na(+) concentration ([Na(+)](o)) was reduced to 20 mm; these intervals were separated by a 5-min recovery period at 140 mm Na(+)(o). The cytosolic Ca(2+) concentration ... More
Hydrolysis of Ca2+-sensitive fluorescent probes by perfused rat heart.
Authors:Scaduto RC, Grotyohann LW
Journal:Am J Physiol Heart Circ Physiol
PubMed ID:14561682
'Rat hearts were loaded with the fluorescent calcium indicators fura 2, indo 1, rhod 2, or fluo 3 to determine cytosolic calcium levels in the perfused rat heart. With fura 2, however, basal tissue fluorescence increased above anticipated levels, suggesting accumulation of intermediates of fura 2-AM deesterification. To examine this ... More
Nitric oxide-dependent mitochondrial biogenesis generates Ca2+ signaling profile of lupus T cells.
Authors:Nagy G, Barcza M, Gonchoroff N, Phillips PE, Perl A
Journal:J Immunol
PubMed ID:15356113
'Abnormal T cell activation and cell death underlie the pathology of systemic lupus erythematosus. Although mitochondrial hyperpolarization (MHP) represents an early and reversible checkpoint of T cell activation and apoptosis, lupus T cells exhibit persistent MHP. NO has recently been recognized as a key signal of mitochondrial biogenesis and mediator ... More