Formatvorlage für Produkttabellen-Spezifikationen

All semiconductor integrated circuits (ICs) are subject to environmental electrostatic discharge (ESD) throughout their lifecycles. Designers utilize multiple techniques to protect these sensitive electronic parts from the damage caused by an unintended ESD event. The industry has standardized methods for qualifying parts against a well-defined set of stress criteria, resulting in classifications that are then assigned to the individual parts. These classifications indicate the maximum stress that the part can experience without any latent or catastrophic failure.

Every ESD control plan is required to identify devices in your portfolio that are sensitive to ESD. To accomplish this, you need to classify the level of their sensitivity. A product’s susceptibility to ESD damage depends on its ability to either:

  • dissipate the discharge energy
  • withstand the levels of current

In the past, there were three main classifications based on three different ESD models:

ModelEquivalent circuitStandard
Human body model (HBM)100 pF @ 1.5 kΩANSI/ESDA/JEDEC JS-001
Charge device model (CDM)6.8 pF/55 pF modulesANSI/ESDA/JEDEC JS-002
Machine model (MM)200 pF @ 0ΩESD STM5.2/JEDEC JESD22A115

Recently, MM was eliminated as a standard test method, leaving HBM and CDM as the only ESD models used today.

Human body model

The most common model for qualifying parts is HBM. This model simulates discharge occurring between a human (e.g. a hand or finger) and a conductor (e.g. a metal rail). For this model, a 100 pF capacitor is discharged through a 1,500 Ω resistor to simulate the waveforms generated by a human body. The typical rise time of the current pulse (ESD) through a shorting wire averages 6 ns (6 x 10-9 s) and is slower for a higher resistance load. The peak current through a short circuit averages 0.67A for a 1000 V pre-charge.

The classifications that are assigned to parts during qualification are based on the maximum voltage stress that the part can survive with no damage (either latent or catastrophic). The following table is per ANSI/ESDA/JEDEC JS-001:

ClassVoltage range
Class 0Z< 50 V
Class 0A50 V to < 125 V
Class 0B125 V to < 250 V
Class 1A250 V to < 500 V
Class 1B500 V to < 1000 V
Class 1C1000 V to < 2000 V
Class 22000 V to < 4000 V
Class 3A4000 V to < 8000 V
Class 3B≥ 8000 V

Charged device model

In the CDM model, it is the device itself that becomes charged; this is typically induced triboelectrically by sliding out of a tube/bag/sorter/etc. When the charged part contacts a conductor at a different potential (e.g. a tabletop, hand, or metal tool) the device will rapidly discharge to that conductor and may result in subsequent device failure. The length of the discharge may be very short (less than 1 nanosecond), but the peak current can be quite high. The CDM model uses either a 6.8 pF or 55 pF verification module (coin) which simulates a peak current anywhere from 2 to 30 amps. The following table is per ANSI/ESDA/JEDEC JS-002:

ClassVoltage range
Class C0a< 125 V
Class C0b125 V to < 250 V
Class C1250 V to < 500 V
Class C2a500 V to < 750 V
Class C2b750 V to < 1000 V
Class C3≥ 1000 V*

* Testing above 1000V is not recommended, see Note 3 in the standard.

The standards committees strongly recommend that each component should be fully classified using both HBM and CDM. That means an item may be classified as both Class 2 (HBM) and Class C1 (CDM). These guidelines are typically used to:

  • Develop and measure suitable on-chip protection
  • Enable comparisons between devices (competitive)
  • Provide a system of ESD sensitivity classification to assist in the ESD design and monitoring requirements of the manufacturing and assembly environments
  • Have documented test procedures to ensure reliable and repeatable results

Please see our products page for a complete suite of test systems to help with your device qualification requirements.

 

ESD qualification workflow example

 

 

Techniques

ESD-Konformitätstests

Elektrostatische Entladungen (ESD) können kleine Merkmale und Strukturen in Halbleitern und integrierten Schaltkreisen beschädigen. Wir bieten eine umfassende Suite von Testgeräten, mit denen Sie überprüfen können, ob Ihre Bauelemente die angestrebten ESD-Konformitätsstandards erfüllen.

Weitere Informationen ›

ESD-Konformitätstests

Elektrostatische Entladungen (ESD) können kleine Merkmale und Strukturen in Halbleitern und integrierten Schaltkreisen beschädigen. Wir bieten eine umfassende Suite von Testgeräten, mit denen Sie überprüfen können, ob Ihre Bauelemente die angestrebten ESD-Konformitätsstandards erfüllen.

Weitere Informationen ›

Samples


Charakterisierung von Halbleitermaterialien und Halbleiterbauelementen

Da Halbleiterbauelemente immer kleiner und komplexer werden, werden neue Designs und Strukturen benötigt. Arbeitsabläufe für hochproduktive 3D-Analysen können die Entwicklungszeit von Bauelementen verkürzen, die Ausbeute maximieren und sicherstellen, dass Bauelemente die zukünftigen Anforderungen der Branche erfüllen.

Weitere Informationen ›


Products

Formatvorlage für das Original der Instrumentenkarten

MK.4TE ESD- und Latch-Up-Testsystem

  • Schneller Relais-basierter Betrieb – bis zu 2.304 Kanäle
  • Erweiterte Gerätevorkonditionierung mit sechs separaten Vektorantriebsstufen
  • Vollständig konformer Latch-Up-Impuls und Geräte-Vorspannung

Celestron Testsystem

  • TLP-Tests auf Wafer- und Gehäuseebene
  • Hochstrom-TLP-Generator
  • Kann mit halbautomatischen Sonden verbunden werden
  • Intuitive Software für Steuerung und Berichterstellung

Orion3 Testsystem

  • Tests geladener Gerätemodelle
  • Zwei hochauflösende Farbkameras
  • Testdichten mit einem Rastermaß von weniger als 0,4 mm

Pegasus

  • Tests nach den neuesten Industriestandards
  • Echtes ESD-Netzwerk auf Systemebene mit 150 pF/330 Ω
  • 2-polige Verbindung über Wafer-Sonden zu jedem Gerät

Style Sheet for Komodo Tabs
Style Sheet to change H2 style to p with em-h2-header class

Contact us