Novex™ Tricine Mini Protein Gels, 10 to 20%, 1.0 mm
Run Invitrogen Mini Protein Gels in Bio-Rad's Mini-PROTEAN® Tetra Cell. Click here for more information.
Novex™ Tricine Mini Protein Gels, 10 to 20%, 1.0 mm
Invitrogen™

Novex™ Tricine Mini Protein Gels, 10 to 20%, 1.0 mm

Invitrogen Novexトリシンゲルは、低分子量のタンパク質およびペプチドの分離を実現します。このシステムでは、トリシンが泳動バッファー中のグリシンに取って代わるため、低分子量タンパク質のより効率的なスタッキングとデスタッキングに加えて、より小さなペプチドに対してより高い分解能が得られます。
製品番号(カタログ番号)ウェル
EC6625BOX10ウェル
EC66252BOX12ウェル
EC66255BOX15ウェル
製品番号(カタログ番号) EC6625BOX
価格(JPY)
30,400
Each
お問い合わせください ›
ウェル:
10ウェル
Invitrogen Novexトリシンゲルは、低分子量のタンパク質およびペプチドの分離を実現します。トリシンシステムは、Schaeggerおよびvon Jagow(Schaeggerおよび von Jagow、1987によって開発された、ペプチドおよび低分子量タンパク質の分離用のトリス-グリシン不連続バッファーシステムの改良版です。このシステムでは、トリシンが泳動バッファー中のグリシンに取って代わるため、低分子量タンパク質のより効率的なスタッキングとデスタッキングに加えて、より小さなペプチドのより高い分解能が得られます。

Novex Tricineタンパク質ゲルの特長:
•分子量が2 kDaのタンパク質の分解能が向上します
• PVDFへの転写後、タンパク質の直接シーケンシングとの互換性が改善されます
• TricineバッファーシステムのpHが低いため、タンパク質の修飾が最小限に抑制されます

製剤
Invitrogen Tricineゲルは、高純度で厳格に品質管理された試薬で製造されています:トリス塩基、HCl、アクリルアミド、ビスアクリルアミド、TEMED、APS、および高精製水。当社のトリシンゲルは4%のスタッキングゲルを備えており、SDSを含んでいません。トリシンシステムで最良の結果を得るには、サンプルおよび泳動バッファーにSDSが必要です。

タンパク質分離に適した トリシンゲルをお選びください。
Invitrogen トリシンゲルには、3種類のポリアクリルアミド濃度が10%、16%、および10–20% の勾配で含まれています。10ウェル、12ウェル、15ウェルなど、当社のさまざまなウェルフォーマットからお選びください。トリシンゲルは、変性ゲル電気泳動アプリケーション用に調製されています。最適なサンプル調製のためには、トリシンSDSサンプルバッファー(LC1676)を、最適な分離には、トリシンSDS泳動バッファー(LC1675)を使用することをお勧めします。

タンパク質を膜に転写する際に、ミニブロットモジュール(B1000)またはXCell IIブロットモジュール(EI9051)を使用して従来のウェット転写を行う場合は、Novex Tris-Glycine転送バッファー(LC3675)の使用をお勧めします。高速セミドライ転写にはInvitrogen Power Blotter、または高速ドライ転写にはiBlot 2 Gel転写装置(IB21001)を使用することも可能です。

For Research Use Only. Not for use in diagnostic procedures.
仕様
Gel Thickness1.0 mm
長さ(メートル法)8 cm
分離モード分子量
製品ラインNovex
数量10ゲル/箱
推奨アプリケーション変性
サンプル充填量最大25 µL
品質保持期間16週間
出荷条件湿氷
保存要件2~8℃にて保存してください。冷凍不可。
幅(メートル法)8 cm
使用対象 (装置)Mini Gel Tank, XCell SureLock Mini-Cell
ゲル濃度10 ~ 20%
ゲルサイズミニ
ゲルタイプトリシン
分離範囲2.5~200 kDa
分離タイプ変性
ウェル10ウェル
Unit SizeEach

よくあるご質問(FAQ)

What does it mean when bands appear to be getting narrower (or "funneling") as they progress down a protein gel?

There may be too much beta-mercaptoethanol (BME), sample buffer salts, or dithiothreitol (DTT) in your samples. If the proteins are over-reduced, they can be negatively charged and actually repel each other across the lanes causing the bands to get narrower as they progress down the gel.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

If a Tricine gel heats up to around 37°C during a run, should any precautions be taken?

A temperature increase to 35°C to 40°C during electrophoresis is not uncommon for Tricine gels. If you want to run the gels at a cooler temperature, the lower (outer) buffer chamber can be filled higher or they can be run at a lower voltage, for example 100 V.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

What type of transfer buffer should be used with Invitrogen Tricine gels?

For non-sequencing applications, any transfer buffer used with Tris-Glycine gels can be used with Tricine gels including Tris-Glycine transfer buffer. For sequencing applications, the buffer should be chemically compatible with sequencing protocols. Non-glycine based transfer buffers such as the NuPAGE Transfer buffer, 1/2X TBE Transfer buffer, or CAPS Buffer can be used for N-terminal sequencing . Generally, a pH which is close to neutral is desirable to maintain gel and protein stability. High current should be avoided because it can lead to heat generation and instability.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

If a Tricine gel is accidentally run with buffers used in the Tris-Glycine system, what will happen and why?

If the Tricine gel is run with Tris-Glycine sample buffer, the bands will behave abnormally and resolve poorly. If the Tricine gel is accidentally run with Tris-Glycine running buffer, the gel will take longer to run and the resolution, especially for smaller proteins, will be worse than when the proteins are run on a Tris-Glycine gel with Tris-Glycine buffers. This is due to a combination of increase in stack area size (glycine is a slower ion than Tricine) and the higher ionic strength of the Tricine gel.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

What is the cause of smeary artifacts down the lanes of a Tricine gel and how can this be prevented?

Protein samples are possibly reoxidizing before the run is complete in the Tricine gel system. Since Tricine is a glycine derivative, the running pH ranges of the two systems are different. As a consequence, reduced samples tend to oxidize more in the Tricine system. Adding more reducing agent will not solve the problem.

One option is to alkylate the sample by reducing with 20 mM DTT at 70°C for 30 min, followed by 50 mM iodoacetic acid to alkylate.

Another method which inhibits oxidation is the addition of thioglycolic acid (TGA) to the running buffer. The reference to this is described by Hunkapiller et al, Methods of Enzymology, (91), 399, 1983.

Caution should be taken when using this method since this compound is both toxic and expensive. In addition, the TGA must be fresh as it tends to become oxidized itself over time. Oxidized TGA will actually promote sample re-oxidation.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

引用および参考文献 (3)

引用および参考文献
Abstract
Aminopeptidase from Sphingomonas capsulata.
Authors:Byun T, Tang M, Sloma A, Brown KM, Marumoto C, Fujii M, Blinkovsky AM,
Journal:J Biol Chem
PubMed ID:11359790
'A novel aminopeptidase with unique substrate specificity was purified from a culture broth of Sphingomonas capsulata. This is the first reported aminopeptidase to demonstrate broad substrate specificity and yet release glycine and alanine with the highest efficacy. On a series of pentapeptide amides with different N-terminal amino acids, this enzyme ... More
cAMP-dependent phosphorylation of two sites in the alpha subunit of the cardiac sodium channel.
Authors:Murphy BJ, Rogers J, Perdichizzi AP, Colvin AA, Catterall WA,
Journal:J Biol Chem
PubMed ID:8910529
'The voltage-sensitive Na+ channel is responsible for generating action potentials in the heart which are critical for coordinated cardiac muscle contraction. Cardiac Na+ channels are regulated by cAMP-dependent phosphorylation, but the sites of phosphorylation are not known. Using mammalian cells expressing the rat cardiac Na+ channel (rH1) alpha subunit and ... More
Molecular characterization and developmental expression of a retinoid- and fatty acid-binding glycoprotein from Drosophila. A putative lipophorin.
Authors:Kutty RK, Kutty G, Kambadur R, Duncan T, Koonin EV, Rodriguez IR, Odenwald WF, Wiggert B,
Journal:J Biol Chem
PubMed ID:8702812
A detailed understanding of the mechanism of lipid transport in insects has been hampered by the inability to identify the proapolipophorin gene that encodes apolipophorins I and II, the principal protein components of lipophorin, the lipid transport vehicle. Here we provide the first molecular description of the Drosophila gene encoding ... More