XCell SureLock™ Mini-Cell and XCell II™ Blot Module
XCell SureLock™ Mini-Cell and XCell II™ Blot Module
Invitrogen™

XCell SureLock™ Mini-Cell and XCell II™ Blot Module

XCell SureLockミニセルとXCell IIブロットモジュールのセットは、ミニゲル用の電気泳動とブロッティングのシステムです。Invitrogenミニゲルの泳動に使用するXCell SureLockミニセルと、最大2枚のミニゲルの同時ブロッティングに使用するXCell IIブロットモジュールで構成されています。 用意されている電気泳動チャンバーシステムをすべて見る›システムの動作XCell詳細を見る
製品番号(カタログ番号)数量
EI00021 unit
製品番号(カタログ番号) EI0002
価格(JPY)
190,000
Each
お問い合わせください ›
数量:
1 unit
XCell SureLockミニセルとXCell IIブロットモジュールのセットは、ミニゲル用の電気泳動とブロッティングのシステムです。Invitrogenミニゲルの泳動に使用するXCell SureLockミニセルと、最大2枚のミニゲルの同時ブロッティングに使用するXCell IIブロットモジュールで構成されています。

用意されている電気泳動チャンバーシステムをすべて見る›

システムの動作
XCell SureLockミニセルは、簡潔なゲルテンションウェッジでゲルを確実に保持します。ゲルテンションウェッジのレバーを前方へロック位置まで押すと、均一な水平方向の力が発生します。これにより、ゲル/バッファーコアアセンブリが下部バッファーチャンバーの所定の位置にしっかりと密閉されます。ゲルテンションウェッジを確実にロックすることで、不具合も液漏れもない状態でいつでもゲルを泳動できます。

XCell IIブロットモジュール
XCell IIブロットモジュールを使用すると、容易にタンパク質や核酸をミニゲルから膜に転写できます。XCell SureLockミニセルとXCell IIミニセルのゲル/バッファーコアアセンブリの位置に収まります。ウェスタン、サザン、ノーザンの各転写に必要な転写バッファーの量は200 mL未満です。頑丈な白金メッキチタンおよびステンレス製電極により、クランプやヒンジ付きゲルホルダーを使用せずに、均一な電場が得られます。最大ブロットサイズは9 cm x 9 cmです。

XCell IIからXCell SureLockミニセルlへのアップグレード
SureLockレトロフィットキット(別売)を使用して、容易にXCell IIをXCell SureLockに変換できます。このキットは、SureLockミニセルのふた、ゲルテンションウェッジ、および成形ミニゲルバッファーダムで構成されています

研究用にのみ使用できます。診断用には使用いただけません。
仕様
数量1 unit
動作寸法垂直
容量ミニプレキャストタンパク質ゲル
使用対象(アプリケーション)ウェット転写
使用対象 (装置)XCell SureLock™ Mini-Cell
Gel Compatibilityミニプレキャストタンパク質ゲル
ゲルサイズMini、8 cm x 8 cm
Membrane Compatibilityニトロセルロース、PVDF
Mode of Transferウェット
製品ラインNovex, XCell II, XCell SureLock
タイプブロットモジュール
Unit SizeEach
組成および保存条件
内容:
• XCell II™ブロットモジュール
• ゲルテンション ウェッジ1個

• 下部バッファーチャンバー1個
• バッファーコア1個
• ミニセルふた1個
• ゲルナイフ1個

保証期間は購入時から1年間です。

よくあるご質問(FAQ)

How can I improve transfer efficiency for larger proteins during western blotting?

Here are some options for obtaining more efficient transfer for larger proteins:

1) Pre-equilibrate the gel with 0.02 to 0.04% SDS in 2X transfer buffer without methanol for 10 min before assembling the sandwich.

2) Increase the blotting time incrementally (in 15 min intervals).

3) Add 0.01% or 0.02% SDS to the transfer buffer to help facilitate the migration of the protein out of the gel.

4) Decrease the methanol content in the transfer buffer.

5) Switch to a more appropriate lower-percentage gel. A lower-percentage gel may allow better transfer than a higher-percentage gel.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

Do I have to run the XCell Blot Module under cold conditions?

No. The solution placed in the outer chamber serves to dissipate the heat generated during blotting. Water is usually used for this purpose. The recommended transfer conditions generate only a minor heat increase, so it is not necessary to run the unit in an ice bucket or to place it in a cold room. However if you are working with very heat-sensitive proteins, you may wish to do so.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

How can I remove residual build-up in the XCell II Blot Module?

Build-up can be removed with 50% nitric acid. Make a solution of 50% nitric acid in deionized water and carefully apply it to areas inside the blot module until residual build-up is removed. Do not submerge the blot module or soak overnight. Use gloves when preparing the solution. Afterwards, rinse the module thoroughly at least three times in fresh deionized water. This treatment should not harm the plastic.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

Can Invitrogen gels be blotted with a Invitrogen Semi-Dry Blotter?

The NuPAGE Invitrogen Bis-Tris Gels do not transfer efficiently using a Invitrogen Semi-Dry Blotter as compared to blotting with XCell II Blot Module.
If you decide to use Invitrogen Semi-Dry Blotter for NuPAGE Invitrogen Bis-Tris Gels, use the protocol provided below to ensure efficient transfer of proteins.

1) Prepare 100 mL of 2X NuPAGE Transfer Buffer from 20X NuPAGE Transfer Buffer as follows:
NuPAGE Transfer Buffer (20X) 10.0 mL
NuPAGE Antioxidant (for reduced sample) 0.1 mL
Methanol 10.0 mL
Deionized water 79.9 mL
Total Volume 100 mL
If you are blotting large proteins, please see the Note below.

2) Soak the filter paper and transfer membrane in the transfer buffer.
If you are using Invitrogen pre-cut membrane/filter sandwiches, use three filter papers (0.4 mm/filter in thickness) on each side of the gel or membrane.
If you are not using the Invitrogen pre-cut membrane/filter sandwiches, use two thick filter papers.

3) Assemble the gel/membrane/filter paper sandwich on top of the anode plate as follows:
filter paper
filter paper
filter paper
membrane
gel
filter paper
filter paper
filter paper

4) Perform the transfer at 15 V (constant) for 15 min if you are using the Bio-Rad Trans-Blot Semi-Dry Transfer Cell. For any other semi-dry transfer cell, follow the manufacturer's recommendations.

Note: For transfer of large proteins (>100 kDa), pre-equilibrate the gel in 2X NuPAGE Transfer Buffer (without methanol) containing 0.02-0.04% SDS for 10 min before assembling the sandwich.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

During Western transfer conditions using constant voltage, what would cause the current reading to drop much lower than the expected starting current?

There are three common explanations:

1) The buffer was accidentally made too dilute, which increases resistance and lowers conductivity and current. Check the transfer buffer and its reagent components, remake, or redilute.

2) The circuit is broken or impeded, as in the case of a corroded or broken electrode or malfunctioning power supply. Check the equipment.

3) There is a leak in the blot module. This is indicated by a drastic decrease in current and in buffer volume within the module.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

引用および参考文献 (7)

引用および参考文献
Abstract
Definition of genetically distinct attenuation mechanisms in naturally virulence-attenuated Listeria monocytogenes by comparative cell culture and molecular characterization.
Authors:Roberts A, Chan Y, Wiedmann M,
Journal:Appl Environ Microbiol
PubMed ID:16000803
'Listeria monocytogenes is a foodborne pathogen able to cause serious disease in humans and animals. Not all isolates are equally pathogenic, however, and several isolates have been characterized as naturally virulence attenuated. We sought to identify the genetic basis of natural virulence attenuation using cell culture assays and molecular techniques. ... More
The novel WD-repeat protein MORG1 acts as a molecular scaffold for HIF prolyl-hydroxylase 3 (PHD3).
Authors:Hopfer U, Hopfer H, Jablonski K, Stahl RA, Wolf G,
Journal:J Biol Chem
PubMed ID:16407229
'Hypoxia-inducible factor-1 (HIF-1), a transcriptional complex composed of an oxygen-sensitive alpha- and a beta-subunit, plays a pivotal role in cellular adaptation to low oxygen availability. Under normoxia, the alpha-subunit of HIF-1 is hydroxylated by a family of prolyl hydroxylases (PHDs) and consequently targeted for proteasomal degradation. Three different prolyl hydroxylases ... More
Combined effect of epinephrine and exercise on calpain/calpastatin and cathepsin B and L activity in porcine longissimus muscle.
Authors:Ertbjerg P, Henckel P, Karlsson A, Larsen LM, Møller AJ,
Journal:J Anim Sci
PubMed ID:10492449
The objective of the study was to improve the understanding of the relationship between the effect of epinephrine plus exercise and meat tenderness. The calpain, calpastatin, and cathepsin B + L activities and postmortem proteolysis in porcine longissimus muscle were studied. The muscle glycogen stores were depleted in five pigs ... More
Regulation of the mitogen-activated protein kinase p44 ERK activity during anoxia/recovery in rainbow trout hypodermal fibroblasts.
Authors:Ossum CG, Wulff T, Hoffmann EK,
Journal:J Exp Biol
PubMed ID:16621957
It is well known from various mammalian cells that anoxia has a major impact on the mitogen-activated protein kinase ERK, but a possible similar effect in fish cells has not been investigated. Here we characterise a p44ERK-like protein in the rainbow trout cell line RTHDF and study the effect of ... More
Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly.
Authors:Grieger JC, Snowdy S, Samulski RJ,
Journal:J Virol
PubMed ID:16699000
Adeno-associated virus (AAV) is gaining momentum as a gene therapy vector for human applications. However, there remain impediments to the development of this virus as a vector. One of these is the incomplete understanding of the biology of the virus, including nuclear targeting of the incoming virion during initial infection, ... More