6-NBDG (6-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-Deoxyglucose)
6-NBDG (6-(<i>N</i>-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-Deoxyglucose)
Invitrogen™

6-NBDG (6-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-Deoxyglucose)

6-NBDGは、生細胞におけるグルコースの取り込みと輸送のモニタリングに使用されている、非加水分解性の蛍光グルコース類似体です。NBD蛍光は環境に敏感ですが、通常は約465/540 nmの最大励起/最大発光波長を示し、フルオレセイン用に設計された光学フィルターを使用して可視化できます詳細を見る
製品番号(カタログ番号)数量
N231065 mg
製品番号(カタログ番号) N23106
価格(JPY)
94,200
Each
お問い合わせください ›
数量:
5 mg
6-NBDGは、生細胞におけるグルコースの取り込みと輸送のモニタリングに使用されている、非加水分解性の蛍光グルコース類似体です。NBD蛍光は環境に敏感ですが、通常は約465/540 nmの最大励起/最大発光波長を示し、フルオレセイン用に設計された光学フィルターを使用して可視化できます。
研究用にのみ使用できます。診断用には使用いただけません。
仕様
概要6-NBDG (6-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-Deoxyglucose)
検出法Absorbance
形状固体
数量5 mg
出荷条件室温
Orange
製品ラインLife Technologies
Unit SizeEach
組成および保存条件
フリーザー(-5℃~-30℃)に保存し、遮光してください。

よくあるご質問(FAQ)

What are the final concentrations of 2-NBDG and 6-NBDG, and incubation times that may be used?

Final concentrations of 2-NBDG can range from 10 µM to 600 µM; 100 µM to 600 µM have been used with bacteria and yeasts and, from 10 µM to 200 µM for primary and cultured mammalian cells.

Final concentrations of 6-NBDG may range from 30 µM up to 300 µM.

Cells should be incubated at the desired temperature and time to allow for sufficient detection of green-yellow fluorescence within cells. Uptake is temperature dependent. Incubation times may range from seconds up to 30 minutes or longer, dependent upon the final concentration of the reagent, cell type, culture conditions, and other factors.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What solvents can be used to resolubilize either 2-NBDG or 6-NBDG to make a stock solution, and how should this stock solution be stored?

Compatible solvents (and approximate maximum solubility): DMSO ( ˜10 mg/mL), DMF (˜10 mg/mL), ethanol (˜20 mg/mL), methanol (˜20 mg/mL), H2O (˜10 mg/mL), PBS, pH 7.2 (˜10 mg/mL).

Stock solutions may be prepared using the recommended solvents in concentrations at or below their maximum solubility and then stored frozen, desiccated (for non-aqueous solvents), and protected from light. Aqueous solutions should not be stored longer than one day.

For long-term storage, these reagents should be stored as a solid at ≤–20°C. To make smaller aliquots, dissolve the reagent in ethanol, make smaller aliquots in separate vials and then evaporate the solvent using a vacuum pump. Do not use DMSO or DMF due to their low vapor pressure.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

引用および参考文献 (23)

引用および参考文献
Abstract
Evaluation of glucose transport and its regulation by insulin in human monocytes using flow cytometry.
Authors:Dimitriadis G, Maratou E, Boutati E, Psarra K, Papasteriades C, Raptis SA
Journal:Cytometry A
PubMed ID:15688355
'BACKGROUND: We investigated the effects of insulin on glucose transport in human monocytes using flow cytometry, a method with several advantages over previously used techniques. We hypothesized that monocytes could be used as tools to study insulin action at the cellular level and facilitate the investigation of mechanisms that lead ... More
Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy.
Authors:Loaiza A, Porras OH, Barros LF
Journal:J Neurosci
PubMed ID:12917367
'Glutamate stimulates glycolysis in astrocytes, a phenomenon that couples astrocytic metabolism with neuronal activity. However, it is not known whether glutamate also affects glucose transporter-1 (GLUT1), the transporter responsible for glucose entry into astrocytes. To address this question, two different real-time single-cell hexose uptake assays were applied to cultured hippocampal ... More
Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes.
Authors:Cloherty EK, Sultzman LA, Zottola RJ, Carruthers A
Journal:Biochemistry
PubMed ID:7492539
'Human erythrocyte net sugar transport is hypothesized to be rate-limited by reduced cytosolic diffusion of sugars and/or by reversible sugar association with intracellular macromolecules [Naftalin, R.J., Smith, P.M., & Roselaar, S.E. (1985) Biochim. Biophys. Acta 820, 235-249]. The present study examines these hypotheses. Protein-mediated 3-O-methylglucose uptake at 4 degrees C ... More
Expression of GLUT-2 cDNA in human B lymphocytes: analysis of glucose transport using flow cytometry.
Authors:Rauchman MI, Wasserman JC, Cohen DM, Perkins DL, Hebert SC, Milford E, Gullans SR
Journal:Biochim Biophys Acta
PubMed ID:1420258
'The molecular characterization of transport proteins is often limited by transient functional expression or the need for a simple method to select functional cDNA clones. We used a mammalian expression system to obtain long-term expression of GLUT-2, an isoform of glucose permease. Rat GLUT-2 cDNA was ligated into an EBV ... More
Flow cytometric analysis of glucose transport by rat brain cells.
Authors:Aller CB, Ehmann S, Gilman-Sachs A, Snyder AK
Journal:Cytometry
PubMed ID:9041115
'The fluorescent, non-metabolizable glucose analog 6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-6-deoxyglucose (NBDG) was used to measure rates of hexose transport by dissociated brain cells from developing and adult rats. Flow cytometric analysis of glucose uptake and expression of glucose transporters was performed by mapping on size by granularity, which discriminated between neurons and astrocytes in ... More