Can I prepare my protein sample with the reducing agent and store it for future use?
DTT is not stable, so it must be added and the reduction performed just prior to loading your samples.
Find additional tips, troubleshooting help, and resources within our Protein Gel 1D Electrophoresis Support Center.
My LDS or SDS sample buffer precipitates when stored at 4 degrees C. Can I warm it up? Can I store it at room temperature?
Precipitation of the LDS or SDS at 4 degrees C is normal. Bring the buffer to room temperature and mix until the LDS/SDS goes into solution. If you do not want to wait for it to dissolve, you can store the sample buffer at room temperature.
Find additional tips, troubleshooting help, and resources within our Protein Gel 1D Electrophoresis Support Center.
How are Bolt gels different than NuPAGE gels?
While they are both Bis-Tris based gels, the chemistries are very different since Bolt gels are optimized for western blotting. Another key difference is the wedge well design of the Bolt gels, which allows larger sample volumes to be loaded.
Find additional tips, troubleshooting help, and resources within our Protein Gel 1D Electrophoresis Support Center.
What is the advantage of NuPAGE Gels over regular Tris-Glycine gels?
The neutral operating pH of the NuPAGE Gels and buffers provides following advantages over the Laemmli system:
-Longer shelf life of 8-12 months due to improved gel stability
-Improved protein stability during electrophoresis at neutral pH resulting in sharper band resolution and accurate results (Moos et al, 1998)
-Complete reduction of disulfides under mild heating conditions (70 degrees C for 10 min) and absence of cleavage of asp-pro bonds using the NuPAGE LDS Sample buffer (pH > 7.0 at 70 degrees C)
-Reduced state of the proteins maintained during electrophoresis and blotting of the proteins by the NuPAGE Antioxidant
Please refer to the following paper: Moos M Jr, Nguyen NY, Liu TY (1988) Reproducible High Yield Sequencing of Proteins Electrophoretically Separated and Transferred to an Inert Support. J Biol Chem 263:6005-6008.
Find additional tips, troubleshooting help, and resources within our Protein Gel 1D Electrophoresis Support Center.
What may cause streaking on the 2nd dimension gel after IEF?
There are several reasons why streaking may occur.
(1) Sample is not completely solubilized prior to application.
(2) Sample is poorly soluble in rehydration solution.
(3) Non-protein impurities in the sample can interfere with IEF, causing horizontal streaking in the final 2-D result, particularly toward the acidic side of the gel.
(4) Ionic impurities are present in sample.
(5) Ionic detergent is present in sample.
(6) Sample load is too high.
(7) Underfocusing. Focusing time was not long enough to achieve steady state focusing.
(8) Overfocusing. Extended focusing times (over 100,000 Vh) may result in electroendosmotic water and protein movement, which can produce horizontal smearing.
What should be done?
(1) Be sure that the sample is completely and stably solubilized. Note: Repeated precipitation-resolubilization cycles produce or increase horizontal streaking.
(2) Increase the concentration of the solubilizing components in the rehydration solution.
(3) Modify sample preparation to limit these contaminants or dialyze protein.
(4) Reduce salt concentration to below 10 mM by dilution or desalt the sample by dialysis. Precipitation with TCA and acetone and subsequent resuspension is another effective desalting technique that removes lipids, nucleotides and other small molecules.
Note: Specific and non-specific losses of proteins can occur with dialysis, gel chromatography, and precipitation/resuspension of samples. If the sample preparation cannot be modified, the effect of ionic impurities can be reduced by modifying the IEF protocol. Limit the voltage to 100-150 V for 2 hours, then resume a normal voltage step program. This pre-step allows the ions in the sample to move to the ends of the IPG strip.
(5) If the ionic detergent SDS is used in sample preparation, the final concentration must not exceed 0.25% after dilution into the rehydration solution. Additionally, the concentration of the non-ionic detergent present must be at least 8 times higher than the concentration of any ionic detergent to ensure complete removal of SDS from the proteins.
(6) Extend focusing time. Load less sample.
(7) Prolong focusing time.
(8) Reduce focusing time.
Find additional tips, troubleshooting help, and resources within our Protein Assays and Analysis Support Center.