Dynabeads™ Protein G for Immunoprecipitation
Dynabeads™ Protein G for Immunoprecipitation
Invitrogen™

Dynabeads™ Protein G for Immunoprecipitation

Dynabeadsタンパク質Gは、組換えタンパク質G(約17 kDa)を表面に共有結合させた均一な2.8 μm超常磁性ビーズです。Dynabeadsタンパク質Gは、免疫沈降(IP)用のセファロースやアガローススラリーに代わる優れた代替品であり詳細を見る
製品番号(カタログ番号)数量
10004D5 mL
10003D1 mL
10009D50 mL
製品番号(カタログ番号) 10004D
価格(JPY)
-
見積もりを依頼する
数量:
5 mL
Dynabeadsタンパク質Gは、組換えタンパク質G(約17 kDa)を表面に共有結合させた均一な2.8 μm超常磁性ビーズです。Dynabeadsタンパク質Gは、免疫沈降(IP)用のセファロースやアガローススラリーに代わる優れた代替品であり、手動および自動のプロトコルを利用できます。

•40分未満でのIP
• 低抗体消費量で高標的タンパク質収量
• シグナルノイズ比が高く、非特異的結合が非常に低い
• カラム、遠心分離、時間のかかる予備洗浄は不要
• KingFisher機器に適合する高い再現性とハイスループット

Dynabeadsの手動分離は迅速かつ簡単
手動プロトコルは簡単で、40分未満で実行できます。まず、標的タンパク質用の抗体をDynabeadsタンパク質Gとともに、チューブで10分間インキュベートします。DynaMagマグネット内にチューブを配置し、上清を除去することで、余分な抗体を洗浄します。抗体でコーティングされたビーズは、IP、Co-IP、クロマチンIP(ChIP)、RNA IP(RIP)、小規模IgG精製、タンパク質精製など、さまざまな下流アプリケーションに使用できます。Dynabeads独自の磁気特性により、DynaMagマグネットを使用して結合物質を簡単に収集できます。ビーズ上の組換えタンパク質Gにはアルブミン結合部位が含まれていないため、アルブミンは手順中に共精製されません。IPは高速で、高い収量、高い再現性が得られ、非特異的結合がほとんどないため、事前洗浄は不要です。

Dynabeadsの自動分離はスループットの向上とハンズオン時間の短縮に役立ちます。
複数のサンプルを並行して処理する場合は、サンプル数に比例して洗浄ステップ数とハンズオン時間が増加します。分注やその他の手動操作は、多くのサンプルを同時に扱う場合、自動化よりも一貫性が低くなる傾向があります。中∼高スループットのサンプル処理を改善し、ハンズオン時間を短縮し、高い再現性を確保するために、KingFisher FlexおよびKingFisher Duo Prime装置用のIPプロトコルを開発しました。自動化プロトコルは手動プロトコルを再現するため、同等に高い標的タンパク質収量と、同様に低い非特異的結合および高い再現性を得られます。10個のサンプルを扱うか96個のサンプルを扱うかは問題ではありません。IPプロトコルはサンプル個数に関わらず40分未満です。試薬をプレートにロードし、“Start(スタート)”ボタンを押すだけで、下流分析の準備ができたころにはIPが完了しています。使用する抗体、および標的タンパク質の存在量や特異性によっては、(インキュベーション時間などの)最適化が必要になる場合があります。

•低∼中程度のスループット(1~12 サンプル/ラン)にはKingFisher Duo装置を使用
• ハイスループット(12~96 サンプル/ラン)には KingFisher Flex装置を使用
自動化プロトコルをご覧ください。
KingFisher Flex装置のビデオをご覧ください。

穏やかな分離がタンパク質への物理的ストレスを最小限に抑える
Dynabeadsタンパク質Gが利用する磁気分離技術は迅速かつ穏やかで、標的タンパク質への物理的ストレスを最小限に抑えます。これにより、長時間のインキュベーション中にプロテアーゼによって解離したり損傷したりする可能性のある不安定な複合体の単離と濃縮が可能になります。天然タンパク質のコンフォメーションおよび大きなタンパク質複合体は保持されます。

結合強度と結合能
Dynabeadsタンパク質Gはほとんどの哺乳類免疫グロブリン(Ig)の単離を可能にします。捕捉されるIg量は、開始サンプル中のIg濃度、およびIgの種類や原材料によって異なります。100 μLのDynabeadsタンパク質Gは、20~200 μg IgG/mLを含むサンプルから約25~30 μgのヒトIgGを単離します。主なFc結合により、最適なIg配向が得られます。この抗体はビーズ外側の滑らかな表面に結合するため、セファロース/アガロースベースのビーズの場合と同様、大きな孔に閉じ込められることはありません。抗体はすべてタンパク質結合に使用できるため、少量の抗体のみ必要でありながら、同一の標的タンパク質を高収量で得ることができます。滑らかなビーズ表面は、Dynabeadsで知られている低レベルの非特異的結合にも関連性があります。

Dynabeadsの詳細を見る
• Dynabeadsタンパク質Aはバッファーを含む「すぐに使える」キットとしてもご利用になれます
免疫沈降選択ガイド、データ、参考文献を見る
• Dynabeads分離用マグネットを見る
他用途のDynabeads製品を探す

OEM購入
Dynabeadsタンパク質AおよびProtein GをOEMベースで購入するには、当社のライセンスおよびOEM販売部門にお問い合わせください。

※Sepharoseは、GE Healthcare Bio-Sciences ABの登録商標です。

研究用にのみ使用できます。診断用には使用いただけません。
仕様
認証/コンプライアンスISO9001 and ISO13485
濃度30 mg/mL
概要Recombinant Protein G covalently bound to Dynabeads
直径(メートル法)2.8 μm
使用対象(アプリケーション)免疫沈降
使用対象 (装置)KingFisher™ Duo Prime、KingFisher™ Flex
フォーマット懸濁液中のビーズ
高スループット適合性ハイスループットに対応
リガンドタイプタンパク質G
材料ポリスチレン
純度または品質グレードFor Research Use Only
数量5 mL
品質保持期間製造日から24ヶ月
出荷条件室温
対応可能対象100 Tests
表面機能Protein G
ターゲットAntibodies
均一性Monosized 2.8 mm (CV <5%)
製品ラインDynabeads
タイプProtein G超常磁性ビーズ
Unit SizeEach
組成および保存条件
内容:5 mL Dynabeads™プロテインG
保存:2~8℃

よくあるご質問(FAQ)

My Dynabeads magnetic beads are not pelleting well with the magnet. Do you have any suggestions for me?

Please review the following possibilities for why your Dynabeads magnetic beads are not pelleting:

- The solution is too viscous.
- The beads have formed aggregates because of protein-protein interaction.

Try these suggestions: - Increase separation time (leave tub on magnet for 2-5 minutes)
- Add DNase I to the lysate (~0.01 mg/mL)
- Increase the Tween 20 concentration to ~0.05% of the binding and/or washing buffer.
- Add up to 20 mM beta-merecaptoethanol to the binding and/or wash buffers.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

I have a long double-stranded DNA fragment I would like to isolate. What product do you recommend?

For biotin-labeled DNA that is less than 1 kb, we recommend you use Dynabeads M270 Streptavidin (Cat. No. 65305) and MyOne C1 magnetic beads (Cat. No. 65001). We recommend our Dynabeads KilobaseBINDER Kit (Cat. No. 60101), which is designed to immobilize long (>1 kb) double-stranded DNA molecules. The KilobaseBINDER reagent consists of M-280 Streptavidin-coupled Dynabeads magnetic beads along with a patented immobilization activator in the binding solution to bind to long, biotinylated DNA molecules for isolation. Please see the following link (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/napamisc/capture-of-biotinylated-targets/immobilisation-of-long-biotinylated-dna-fragments.html) for more information in regards to long biotinylated DNA fragment isolation.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

Can I use Dynabeads magnetic beads to isolate single-stranded DNA templates?

Yes, Dynabeads magnetic beads can be used to isolate single-stranded DNA. Streptavidin Dynabeads magnetic beads can be used to target biotinylated DNA fragments, followed by denaturation of the double-stranded DNA and removal of the non-biotinylated strand. The streptavidin-coupled Dynabeads magnetic beads will not inhibit any enzymatic activity. This enables further handling and manipulation of the bead-bound DNA directly on the solid phase. Please see the following link (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/napamisc/capture-of-biotinylated-targets/preparing-single-stranded-dna-templates.html) for more information in regards to single-stranded DNA capture.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

What is the magnetic susceptibility for Dynabeads magnetic beads?

Magnetic susceptibility is a measure of how quickly the beads will migrate to the magnet. This will depend on the iron content and the character of the iron oxide. The magnetic susceptibility given for the Dynabeads magnetic beads is the mass susceptibility, given either as cgs units/g or m^3/kg (the latter being an SI unit). For ferri- and ferromagnetic substances, the magnetic mass susceptibility is dependent upon the magnetic field strength (H), as the magnetization of such substances is not a linear function of H but approaches a saturation value with increasing field. For that reason, the magnetic mass susceptibility of the Dynabeads magnetic beads is determined by a standardized procedure under fixed conditions. The magnetic mass susceptibility given in our catalog is thus the SI unit. Conversion from Gaussian (cgs, emu) units into SI units for magnetic mass susceptibility is achieved by multiplying the Gaussian factor (emu/g or cgs/g) by 4 pi x 10^-3. The resulting unit is also called the rationalized magnetic mass susceptibility, which should be distinguished from the (SI) dimensionless magnetic susceptibility unit. In general, magnetic mass susceptibility is a measure of the force (Fz) influencing an object positioned in a nonhomogenous magnetic field. The magnetic mass susceptibility of the Dynabeads magnetic beads is measured by weighing a sample, and then subjecting the sample to a magnetic field of known strength. The weight (F1) is then measured, and compared to the weight of the sample when the magnetic field is turned off (F0). The susceptibility is then calculated as K x 10^-3 = [(F1-F0) x m x 0.335 x 10^6], where K is the mass susceptibility of the sample of mass m. The susceptibility is then converted to SI units.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

How can I determine coupling efficiency of Dynabeads magnetic beads?

There are different methods to check binding of ligands to the beads, including optical density (OD) measurement, fluorescent labeling, and radioactive labeling.

For OD measurement, you would measure the OD of the ligand before immobilization to the beads and compare it with the ligand concentration that is left in the supernatant after coating. This gives a crude measurement of how much protein has bound to the beads.

Protocol:

1.Set spectrophotometer to the right wavelength. As a blank, use the Coupling Buffer.
2.Measure the absorbance of the Pre-Coupling Solution. A further dilution may be necessary to read the absorbance, depending upon the amount of ligand added.
3.Measure the absorbance of the Post-Coupling Solution. A dilution may be necessary to read the absorbance.
4.Calculate the coupling efficiency, expressed as the % protein uptake, as follows. [(Pre-Coupling Solution x D) - (Post-Coupling Solution x D)] x 100/(Pre-Coupling Solution x D) where D = dilution factor.

For fluorescent labeling, we suggest negatively quantifying the amount of ligand bound by measuring ligand remaining in the coupling supernatant (compared to the original sample), rather than directly measuring the ligands on the beads. Add labeled ligand to the beads, and measure how much ligand is left in the supernatant (not bound to the beads). By comparing this with the total amount added in the first place, you can then calculate how much of the ligand that has been bound to the beads. Keep in mind that the Dynabeads magnetic beads are also autofluorescent, which is why direct measuring of fluorescence of the bead-bound ligands is not recommended, but rather this indirect approach. The label could be, for example, FITC/PE. Some researchers perform a direct approach with success (using a flow cytometer).

Radioactive labeling is the most sensitive method of the three, but it is also the most difficult one. It involves radioactively labeling a portion of the ligand. We use radiolabeled I-125 in tracer amounts and mix it with "cold" ligands in a known ratio before coupling. The absolute quantities for the ligand on the beads should be obtained by measuring the beads in a scintillation (gamma) counter and comparing the cpm with a standard.

Protocol:

1.Take out an appropriate amount of beads and wash the beads in 1 mL of binding buffer.
2.Pipette out desired amount of human IgG in a separate tube.
3.Mix the human IgG with I-125-labeled human IgG (30,000 - 100,000 cpm).
4.Dilute the mixture of human IgG and I-125-labeled human IgG to 100 mL in binding buffer.
5.Incubate for 30 minutes at room temperature and measure the cpm in a scintillation counter.
6.Wash the beads (with coating) four times, and measure cpm again.
The % binding is calculated by using the equation : (cpm after washing/cpm before washing)x100%.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

引用および参考文献 (23)

引用および参考文献
Abstract
Reply to Bagni: On BC1 RNA and the fragile X mental retardation protein.
Authors:Iacoangeli A, Rozhdestvensky TS, Dolzhanskaya N, Tournier B, Schütt J, Brosius J, Denman RB, Khandjian EW, Kindler S, Tiedge H,
Journal:Proc Natl Acad Sci U S A
PubMed ID:18511554
'The fragile X mental retardation protein (FMRP), the functional absence of which causes fragile X syndrome, is an RNA-binding protein that has been implicated in the regulation of local protein synthesis at the synapse. The mechanism of FMRP’s interaction with its target mRNAs, however, has remained controversial. In one model, ... More
Characterization of human cytochrome P450s involved in the bioactivation of tri-ortho-cresyl phosphate (ToCP).
Authors:Reinen J, Nematollahi L, Fidder A, Vermeulen NP, Noort D, Commandeur JN
Journal:
PubMed ID:25706813
'Tri-ortho-cresyl phosphate (ToCP) is a multipurpose organophosphorus compound that is neurotoxic and suspected to be involved in aerotoxic syndrome in humans. It has been reported that not ToCP itself but a metabolite of ToCP, namely, 2-(ortho-cresyl)-4H-1,2,3-benzodioxaphosphoran-2-one (CBDP), may be responsible for this effect as it can irreversibly bind to human ... More
Profiling cholinesterase adduction: a high-throughput prioritization method for organophosphate exposure samples.
Authors:Carter MD, Crow BS, Pantazides BG, Watson CM, DeCastro BR, Thomas JD, Blake TA, Johnson RC
Journal:
PubMed ID:23954929
'A high-throughput prioritization method was developed for use with a validated confirmatory method detecting organophosphorus nerve agent exposure by immunomagnetic separation high-performance liquid chromatography tandem mass spectrometry. A ballistic gradient was incorporated into this analytical method to profile unadducted butyrylcholinesterase (BChE) in clinical samples. With Zhang et al.''s Z'' factor ... More
Nitration and inactivation of IDO by peroxynitrite.
Authors:Fujigaki H, Saito K, Lin F, Fujigaki S, Takahashi K, Martin BM, Chen CY, Masuda J, Kowalak J, Takikawa O, Seishima M, Markey SP,
Journal:J Immunol
PubMed ID:16365430
IDO induction can deplete L-tryptophan in target cells, an effect partially responsible for the antimicrobial activities and antiallogeneic T cell responses of IFN-gamma in human macrophages, dendritic cells, and bone marrow cells. L-tryptophan depletion and NO production are both known to have an antimicrobial effect in macrophages, and the interaction ... More
Protein sorting in the late Golgi of Saccharomyces cerevisiae does not require mannosylated sphingolipids.
Authors:Lisman Q, Pomorski T, Vogelzangs C, Urli-Stam D, de Cocq van Delwijnen W, Holthuis JC,
Journal:J Biol Chem
PubMed ID:14583628
Glycosphingolipids are widely viewed as integral components of the Golgi-based machinery by which membrane proteins are targeted to compartments of the endosomal/lysosomal system and to the surface domains of polarized cells. The yeast Saccharomyces cerevisiae creates glycosphingolipids by transferring mannose to the head group of inositol phosphorylceramide (IPC), yielding mannosyl-IPC ... More