Search
Search
The Use of LiCl Precipitation for RNA Purification
LiCl has been frequently used to precipitate RNA, although precipitation with alcohol and a monovalent cation such as sodium or ammonium ion is much more widely used. LiCl precipitation offers major advantages over other RNA precipitation methods in that it does not efficiently precipitate DNA, protein or carbohydrate (Barlow et al., 1963). It is the method of choice for removing inhibitors of translation or cDNA synthesis from RNA preparations (Cathala et al., 1983). It also provides a simple rapid method for recovering RNA from in vitro transcription reactions.
We provide LiCl as an RNA recovery agent in its Invitrogen™ MEGAscript™ and Invitrogen™ mMESSAGE mMACHINE™ large scale in vitro transcription kits. However, while providing telephone technical service, we have noticed that many users are reluctant to use LiCl, presumably because there is not good data in the literature describing its properties. We have conducted a systematic study of the use of LiCl and find that it is a very effective method for precipitating RNA, especially from in vitro transcription reactions.
The three key variables we studied were: (a) the temperature at which the precipitate is allowed to form, (b) the concentration of the RNA and the lithium chloride used and, (c) the time and speed of centrifugation used to collect the precipitated RNA. All of these variables have been explored and are discussed below. We find that LiCl precipitated RNA samples prepared in this way require no further purification for use in hybridization and in vitro translation reactions. It has been reported that lithium chloride is unsuitable for cell free translations due to the inhibition of chloride ions (Maniatis, et al., 1989); However, we have not been able to document any deleterious effect in either translation or microinjection experiments. Another advantage is that lithium precipitation efficiently removes unincorporated NTPs, which allows for more accurate quantitation by UV spectrophotometry.

Figure 2. Effect of Lithium Chloride Concentration on Precipitating RNA. Lane 1, RNA size standards. Lane 2, 2.5 M LiCl. Lane 3, 1.0 M LiCl. Lane 4, 0.5 M LiCl, and lane 5, no LiCl.
The RNA was kept at a constant concentration of 1 µg/ml, with 1.0 M lithium chloride. The length of time for precipitation was tested at 0, 0.5, and 1.0 hour. The 0.5 and 1.0 hour time points were incubated at -20°C and 25°C to test precipitation time and temperature independently. Samples were prepared as before, and visualized on a 4% PAGE-urea gel. In Figure 3, it appears that allowing precipitation to occur for a 30 minute period is more efficient than immediate centrifugation; compare Lane 2 to Lane 3. Although it appears there is no difference in precipitating 30 or 60 minutes at -20°C and 25°C, as seen in Lanes 3-6, it is advisable to precipitate at -20°C for 30 minutes to lower the activity of any possible RNases that might be present.
Figure 3. Effect of Precipitation Temperature Using Lithium Chloride. Lane 1, RNA size standards. Lane 2, RNA centrifuged immediately without chilling. Lane 3, RNA chilled at -20°C for 30 minutes before centrifugation. Lane 4, RNA incubated at 25°C for 30 minutes to test precipitation time independently of chilling. Lane 5, RNA chilled at -20°C for 1 hour. Lane 6, RNA incubated at 25°C for 1 hour.
Figure 4. Effects of Centrifugation Time in Precipitating RNA. Lane 1, RNA size standards. Lane 2, RNA centrifuged for 20 minutes, Lane 3, 10 minutes, Lane 4, 5 minutes, Lane 5, 2 minutes, Lane 6, 1 minutes, and Lane 7, 30 seconds.
The use of lithium chloride in RNA precipitation is a fast, convenient method of isolating transcripts from in vitro transcription reactions with very low carry over of unincorporated nucleotides. A major advantage of lithium chloride is that it does not efficiently precipitate either protein or DNA. For some applications, gel purification may be necessary, as in a ribonuclease protection assay. For in vitro or in vivo translation, the lithium chloride method may be preferable to ethanol precipitation since full-length transcripts are often preferentially recovered. Moreover, RNAs precipitated by this method give more accurate values when quantitated by UV spectroscopy since lithium chloride is so effective at removing free nucleotides. This strategy is similar to the use of isopropanol rather than ethanol to precipitate nucleic acids. Isopropanol is less efficient than ethanol at precipitating nucleotides and thus, gives more accurate values when RNA concentration is quantitated by UV spectrophotometry.
Contrary to previously published reports, we find that lithium chloride does not appear to preferentially precipitate higher molecular weight RNA rather than smaller RNA. Lithium chloride precipitations using mixtures of equal amounts of RNA of lengths 100, 200, 300, 400, and 500 bases (RNA Century Size Standards) showed that all sizes were precipitated equally well (data not shown). Since it was thought that the larger sizes might aid in the precipitation of smaller size transcripts, the experiments in this paper were performed using each size of transcript separately. No differences in precipitating a single size of RNA (e.g. 100 bases) as compared to a mix of all sizes of the RNA markers was seen. It should be noted, however, that some small RNAs such as tRNAs are not efficiently precipitated by lithium chloride. This is likely due to the high degree of secondary structure in tRNA. While we recommend the routine use of lithium chloride for precipitating RNA from solutions containing at least 400 µg/ml RNA, we are cautious about recommending its use with lower concentrations of RNA until we have tested its use with a wider range of RNAs.