Click-IT™ Palmitic Acid, Azide (15-Azidopentadecanoic Acid)
Click-IT™ Palmitic Acid, Azide (15-Azidopentadecanoic Acid)
Invitrogen™

Click-IT™ Palmitic Acid, Azide (15-Azidopentadecanoic Acid)

Green features
Click-iT®パルミチン酸、アジドでは、強力なクリックケミストリーと、シンプルで堅牢な2ステップの標識および検出手法を使用して、パルミチル化されたタンパク質を同定および特性評価できます。ステップ1では、アジドを含む生体分子が細胞や動物に供給され、タンパク質に活発に取り込まれます。ビオチンや蛍光色素といった他の標識とは異なり、アジドタグは分子量が十分に低いため詳細を見る
製品番号(カタログ番号)数量
C102651 mg
製品番号(カタログ番号) C10265
価格(JPY)
96,000
Each
お問い合わせください ›
数量:
1 mg
Click-iT®パルミチン酸、アジドでは、強力なクリックケミストリーと、シンプルで堅牢な2ステップの標識および検出手法を使用して、パルミチル化されたタンパク質を同定および特性評価できます。ステップ1では、アジドを含む生体分子が細胞や動物に供給され、タンパク質に活発に取り込まれます。ビオチンや蛍光色素といった他の標識とは異なり、アジドタグは分子量が十分に低いため、タグ付き分子は、その構成ブロックをタンパク質に取り入れる基質として酵素から受け入れられます。検出には、アジドとアルキンの間の化学選択的ライゲーションまたは「クリック」反応を利用します。この反応では、Click-iT®細胞反応バッファーキットまたはClick-iT®タンパク質反応バッファーキットのいずれかを使用することで、対応するアルキンを含む色素またはハプテンによって修飾タンパク質が検出されます。Click-iT®細胞反応バッファーキットを使用する場合は、蛍光顕微鏡、フローサイトメトリー、またはハイコンテントイメージングと分析(HCS)を他の対象バイオマーカーと組み合わせることで細胞を解析し、内容の充実した結果を得られます。Click-iT®タンパク質反応バッファーキットを使用する場合は、1-Dゲルおよびウェスタンブロットで低フェムトモル範囲の検出感度を達成したり、LC-MS⁄MSおよびMALDI MS分析を実行したりできます。
研究用にのみ使用できます。診断用には使用いただけません。
仕様
フォーマット固体
グリーン機能危険性が低い
標識法代謝標識
製品ラインClick-iT、Molecular Probes
製品タイプパルミチン酸
数量1 mg
出荷条件室温
Labeling Targetタンパク質, タンパク質, タンパク質
標識または色素アジド
Unit SizeEach
組成および保存条件
≦-20℃以下の乾燥した光の当たらない場所で保存してください。

よくあるご質問(FAQ)

I am observing no signal or very low signal for my click-labeled samples. What can I do to improve the signal?

The click reaction is only effective when copper is in the appropriate valency. Except for the DIBO alkyne-azide reaction, azides and alkynes will not react with each other without copper. Make sure that the click reaction mixture is used immediately after preparation when the copper (II) concentration is at its highest.
Do not use additive buffer that has turned yellow; it must be colorless to be active.
Cells need to be adequately fixed and permeabilized for the click reagents to have access to intracellular components that have incorporated the click substrate(s).
Some reagents can bind copper and reduce its effective concentration available to catalyze the click reaction. Do not include any metal chelator (e.g., EDTA, EGTA, citrate, etc.) in any buffer or reagent prior to the click reaction. Avoid buffers or reagents that include other metal ions that may be oxidized or reduced. It may be help to include extra wash steps on the cell or tissue sample before performing the click reaction.
You can repeat the click reaction with fresh reagents to try to improve signal. Increasing the click reaction time longer than 30 minutes will not improve a low signal. Performing a second, 30 minute incubation with fresh click reaction reagents is more effective at improving labeling.
Low signal can also be due to low incorporation of EdU, EU, or other click substrates. Other click substrates (e.g., AHA, HPG, palmitic acid, azide, etc.) incorporated into cellular components may have been lost if not adequately cross-linked in place or if the wrong fixative was used. For click substrates that are incorporated into the membrane or lipids, you should avoid the use of alcohol or acetone fixatives and permeabilizing agents.
The incorporated click substrate must be accessible at the time of the click reaction; labeling of incorporated amino acid analogs may be lower in native proteins relative to denatured proteins.
You may need to optimize the metabolic labeling conditions including analog incubation time or concentration. Cells that are healthy, not too high of a passage number and not too crowded may incorporate the analog better. You may create a positive control by including extra doses of the click substrate during multiple time points during an incubation time that spans or closely spans the doubling time of the cell type of interest.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

引用および参考文献 (3)

引用および参考文献
Abstract
Chemical probes for the rapid detection of Fatty-acylated proteins in Mammalian cells.
Authors:Hang HC, Geutjes EJ, Grotenbreg G, Pollington AM, Bijlmakers MJ, Ploegh HL,
Journal:J Am Chem Soc
PubMed ID:17305342
'New tools are needed to further our understanding of protein fatty acylation. Here we demonstrate that omega-azido fatty acids can be efficiently metabolized by mammalian cells and serve as selective probes to rapidly visualize N-myristoylation and S-acylation, respectively. In addition to the more sensitive detection of fatty-acylated proteins with these ... More
Lipid raft-dependent endocytosis of close homolog of adhesion molecule L1 (CHL1) promotes neuritogenesis.
Authors:Tian N, Leshchyns'ka I, Welch JH, Diakowski W, Yang H, Schachner M, Sytnyk V,
Journal:J Biol Chem
PubMed ID:23144456
CHL1 plays a dual role by either promoting or inhibiting neuritogenesis. We report here that neuritogenesis-promoting ligand-dependent cell surface clustering of CHL1 induces palmitoylation and lipid raft-dependent endocytosis of CHL1. We identify ßII spectrin as a binding partner of CHL1, and we show that partial disruption of the complex between ... More
Robust fluorescent detection of protein fatty-acylation with chemical reporters.
Authors:Charron G, Zhang MM, Yount JS, Wilson J, Raghavan AS, Shamir E, Hang HC,
Journal:J Am Chem Soc
PubMed ID:19281244
Fatty-acylation of proteins in eukaryotes is associated with many fundamental cellular processes but has been challenging to study due to limited tools for rapid and robust detection of protein fatty-acylation in cells. The development of azido-fatty acids enabled the nonradioactive detection of fatty-acylated proteins in mammalian cells using the Staudinger ... More