Search
Search
View additional product information for pLenti6/V5 Directional TOPO™ Cloning Kit - FAQs (K495510)
35 product FAQs found
Here are possible causes and solutions:
Detection method may not be appropriate or sensitive enough:
- We recommend optimizing the detection protocol or finding more sensitive methods. If the protein is being detected by Coomassie/silver staining, we recommend doing a western blot for increased sensitivity. The presence of endogenous proteins in the lysate may obscure the protein of interest in a Coomassie/silver stain. If available, we recommend using a positive control for the western blot.
- Insufficient number of clones screened: Screen at least 20 clones.
- Inappropriate antibiotic concentration used for stable selection: Make sure the antibiotic kill curve was performed correctly. Since the potency of a given antibiotic depends upon cell type, serum, medium, and culture technique, the dose must be determined each time a stable selection is performed. Even the stable cell lines we offer may be more or less sensitive to the dose we recommend if the medium or serum is significantly different.
- Expression of gene product (even low level) may not be compatible with growth of the cell line: Use an inducible expression system.
- Negative clones may result from preferential linearization at a vector site critical for expression of the gene of interest: Linearize the vector at a site that is not critical for expression, such as within the bacterial resistance marker.
Here are possible causes and solutions:
- Try the control expression that is included in the kit
Possible detection problem:
- Detection of expressed protein may not be possible in a transient transfection, since the transfection efficiency may be too low for detection by methods that assess the entire transfected population. We recommend optimizing the transfection efficiency, doing stable selection, or using methods that permit examination of individual cells. You can also increase the level of expression by changing the promoter or cell type.
- Expression within the cell may be too low for the chosen detection method. We recommend optimizing the detection protocol or finding more sensitive methods. If the protein is being detected by Coomassie/silver staining, we recommend doing a western blot for increased sensitivity. The presence of endogenous proteins in the lysate may obscure the protein of interest in a Coomassie/silver stain. If available, we recommend using a positive control for the western blot.
Protein might be degraded or truncated: Check on a Northern.
Possible time-course issue: Since the expression of a protein over time will depend upon the nature of the protein, we always recommend doing a time course for expression. A pilot time-course assay will help to determine the optimal window for expression.
Possible cloning issues: Verify clones by restriction digestion and/or sequencing.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
No; neomycin is toxic to mammalian cells. We recommend using Geneticin (a.k.a. G418 Sulfate), as it is a less toxic and very effective alternative for selection in mammalian cells.
Translation initiation will occur at the first ATG encountered by the ribosome, although in the absence of a Kozak sequence, initiation will be relatively weak. Any insert downstream would express a fusion protein if it is in frame with this initial ATG, but levels of expressed protein are predicted to be low if there is a non-Kozak consensus sequence. If the vector contains a non-Kozak consensus ATG, we recommend that you clone your gene upstream of that ATG and include a Kozak sequence for optimal expression.
We offer pJTI R4 Exp CMV EmGFP pA Vector, Cat. No. A14146, which you can use to monitor your transfection and expression.
The CMV promoter is known to be downregulated over time in mouse cell lines. Hence, we recommend using one of our non-CMV vectors, such as those with the EF1alpha or UbC promoter, for long-term expression in mouse cell lines.
The consensus Kozak sequence is A/G NNATGG, where the ATG indicates the initiation codon. Point mutations in the nucleotides surrounding the ATG have been shown to modulate translation efficiency. Although we make a general recommendation to include a Kozak consensus sequence, the necessity depends on the gene of interest and often, the ATG alone may be sufficient for efficient translation initiation. The best advice is to keep the native start site found in the cDNA unless one knows that it is not functionally ideal. If concerned about expression, it is advisable to test two constructs, one with the native start site and the other with a consensus Kozak. In general, all expression vectors that have an N-terminal fusion will already have an initiation site for translation.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
ATG is often sufficient for efficient translation initiation although it depends upon the gene of interest. The best advice is to keep the native start site found in the cDNA unless one knows that it is not functionally ideal. If concerned about expression, it is advisable to test two constructs, one with the native start site and the other with a Shine Dalgarno sequence/RBS or consensus Kozak sequence (ACCAUGG), as the case may be. In general, all expression vectors that have an N-terminal fusion will already have a RBS or initiation site for translation.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
We suggest starting with a molar ratio of 1:1 (insert:vector), with a range of 0.5:1 to 2:1. The quantity used in a TOPO cloning reaction is typically 5-10 ng of a 2 kb PCR product.
Equation:
length of insert (bp)/length of vector (bp) x ng of vector = ng of insert needed for 1:1 (insert:vector ratio)
The optimal ratio is 1:1 insert to vector. Optimization can be done using a ratio of 0.5-2 molecules of insert for every molecule of the vector.
Equation:
length of insert (bp)/length of vector (bp) x ng of vector = ng of insert needed for 1:1 insert:vector ratio
No, your gene of interest must be amplified with a proofreading polymerase such as Platinum SuperFi DNA Polymerase or AccuPrime Pfx DNA Polymerase that leaves blunt ends for directional TOPO cloning.
Please consider the following when designing your primers:
- The 3' pcr primer cannot contain homology to the 5' flap sequence GTGG.
- The enzyme you use must create a blunt-ended PCR product for cloning.
- Primers cannot contain 5' phosphates, which will block the 5' OH nucleophile reactive group.
- The reading frame must be considered when you are designing your primers.
TA Cloning:
- This cloning method was designed for use with pure Taq polymerases (native, recombinant, hot start); however, High Fidelity or Taq blends generally work well with TA cloning. A 10:1 or 15:1 ratio of Taq to proofreader polymerase will still generate enough 3' A overhangs for TA cloning.
- Recommended polymerases include Platinum Taq, Accuprime Taq, Platinum or Accuprime Taq High Fidelity, AmpliTaq, AmpliTaq Gold, or AmpliTaq Gold 360.
Blunt cloning:
- Use a proofreading enzyme such as Platinum SuperFi DNA Polymerase.
Directional TOPO cloning:
- Platinum SuperFi DNA Polymerase works well.
The lentiviruses produced in this system will not replicate under any conditions. You must perform a fresh transfection each time you need more virus.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
Yes, it will work as an expression vector by itself and can be stably selected with blasticidin. Please note that the vector will be about twice the size of most regular vectors. Therefore you may need to increase the amount of transfected vector to approximate molar equivalents.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
Lentiviruses produced with this system do not carry or express ANY viral genes and therefore have no associated toxicity issues. Only the protein expressed from the coding region between the LTR sites is incorporated into the mammalian cell chromosome and expressed. The lentivirus itself cannot replicate because of the built-in safety features.
For routine maintenance of 293FT cells, you need to add Geneticin (G418) antibiotic at a concentration of 500 µg/mL to maintain the Large T antigen plasmid/phenotype.
The F stands for the high transfection efficiency of this particular 293 cell clone (called 293F) and the T stands for the SV40 large T antigen. If you want to use regular 293 cells or another 293T cell line, you will be able to produce virus, but the titers will be lower. The large T antigen expression plasmid is stably integrated in the 293FT cell and confers resistance to Geneticin antibiotic in these cells.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
For HT1080 cells we typically use 10 µg/mL, but we strongly recommend that you generate a kill-curve for each antibiotic and cell line before proceeding. Most cell types respond to between 1 µg/mL and 10 µg/mL of blasticidin. For HT1080 cells, we typically use 100 µg/mL of Zeocin for Zeocin-containing lentiviral vectors. But again, generation of a kill-curve is strongly suggested.
We strongly recommend titering on HT1080 cells to determine the absolute titer of infectious virus in your supernatant. The primary reason is that it's a way to standardize titers obtained in different labs. Transduction efficiency is high in these cells, and titering results are very accurate and reproducible, making HT1080 cells the gold standard for titering. You can then try different MOIs in other cell types based on HT1080 titers. For instance, you may require an MOI of 50 in one cell type or MOI of 10 in another cell type based on titers obtained in HT1080.Accurate titer, however, can be obtained in essentially any mammalian cell line, but 3T3 and HeLa cells have a lower transduction efficiency than HT1080 cells (for reasons unknown). Do not use 293FT cells for titering.
Yes, you can use restriction enzymes Cla I (cutting at 1796) and BamH I (cutting at 2401) to remove the CMV promoter from the pLent6/V5-D-TOPO vector. Use Cla I and Spe I for the pLenti6/V5-DEST vector. Alternatively, we offer promoter-less lentiviral vector, pLenti6.4/R4R2/V5-DEST (Cat. No. A11145).
Ultracentrifugation is the most commonly used approach and is typically very successful (see Burns et al. (1993) Proc Natl Acad Sci USA 90:8033-8037; Reiser (2000) Gene Ther 7:910-913). Others have used PEG precipitation. Some purification methods are covered by patents issued to the University of California and Chiron.
Adenovirus is concentrated using CsCl density gradient centrifugation (there is a reference for this procedure in our adenovirus manual) or commercially available columns.
Titers between 1 x 10e5 and 3 x 10e5 cfu/mL (unconcentrated) are typical. If the titer is lower than 1x 10e5 cfu/mL, virus production was not optimal (arising for various reasons). Titers for the LacZ virus are typically in this low to mid 10e5 range. The sample lentiviral titer experiment shown in the ViraPower instruction manual shows lacZ lentivirus with a titer of 4.8 x 10e6 cfu/mL.
We strongly suggest that you titer your lentivirus on HT1080 cells, which allows you to compare titers from day-to-day within your lab and also with external labs. Transduction efficiency is high in these cells, and titering results are very accurate and reproducible--making HT1080 cells the gold standard for titering. You can then try different MOIs in other cell types based on HT1080 titers. For instance, you may require an MOI of 50 in one cell type or MOI of 10 in another cell type based on titers obtained in HT1080.
The ViraPower Lentiviral System:
(1) effectively transduces both dividing and non-dividing cells
(2) efficiently delivers the gene of interest to mammalian cells in culture or in vivo
(3) produces a pseudotyped virus with a broadened host range
(4) includes multiple features designed to enhance the biosafety of the system
Clone your gene of interest into one of our lentiviral expression vectors. We have a Directional TOPO version (pLenti6/V5/D-TOPO) and a Gateway version (pLenti6/V5-DEST vector). Co-transfect your recombinant vector along with the optimized ViraPower packaging mix into the 293FT producer cell line using Lipofectamine 2000 reagent (if using a different transfection reagent, follow the manufacturer's recommendations). Harvest the viral supernatant and determine the titer of the virus. Add the viral supernatant to your mammalian cell line of interest at the appropriate MOI. Assay for "transient" expression of your recombinant protein or select for stably transduced cells using the appropriate selection antibiotic, if desired, then examine expression of your protein of interest.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
This depends entirely on the target cell. Adenovirus requires the coxsackie-adenovirus receptor (CAR) and an integrin for efficient transduction. Lentivirus (with VSV-G) binds to a lipid in the plasma membrane (present on all cell types). With two totally different mechanisms of entry into the cell, there will always be differences in transduction efficiencies. However, the efficiency of transduction for both viral systems is easily modulated by the multiplicity of infection (MOI) used.
We use mycoplasma-tested Gibco FBS (Cat. No. 16000-044) without any modifications. We have observed that when 293FT cells are cultured in the presence of this FBS following the instructions in the manual, virus production is better than that obtained with many other serum sources.
We use the following plasticware for 293A and 293FT cells:
T175--Fisher Cat. No. 10-126-13; this is a Falcon flask with 0.2 µm vented plug seal cap.
T75--Fisher Cat. No. 07-200-68; this is a Costar flask with 0.2 µm vented seal cap.
100 mm plate--Fisher Cat. No. 08-772E; this is a Falcon tissue culture-treated polystyrene plate
We get excellent adherence on these plates under routine cell culture/maintenance conditions (expect cell lysis in 293A cells when making adenovirus).
Viral vectors:
Store lentiviral and adenoviral expression vectors (plasmid DNA) at -20 degrees C. Due to their relatively large sizes, we do not recommend storing these vectors at -80 degrees C, as the vector solutions will completely freeze and too many freeze thaws from -80 degrees C will affect the cloning efficiency. At -20 degrees C, the vectors will be stable but will not freeze completely. Glycerol stocks of vectors transformed into bacteria should always be stored at -80 degrees C.
Virus:
Both adenovirus and lentivirus particles should be aliquoted immediately after production and stored at -80 degrees C.
Lentivirus is more sensitive to storage temperature and to freeze/thaw than adenovirus and should be handled with care. Adenovirus can typically be frozen/thawed up to 3 times without loss of titer, while lentivirus can lose up to 5% or more activity with each freeze/thaw. It is recommended to aliquot your virus into small working volumes immediately after production, freeze at -80 degrees C, and then thaw just one aliquot for titering. This way, every time you thaw a new aliquot it should be the same titer as your first tube.
Adenovirus particles can be kept overnight at 4 degrees C if necessary, but it is best to avoid this. Viruses will be most stable at -80 degrees C.
When stored properly, viral stocks should maintain consistent titer and be suitable for use for up to one year. After long-term storage, we recommend re-titering your viral stocks before use.
Both the lentiviral and adenoviral systems should be used following Biosafety Level 2 (BSL-2). We recommend strict adherence to all CDC guidelines for BSL-2 (as well as institutional guidelines). Thermo Fisher Scientific has also engineered specific safety features into the lentiviral system.
Consult the "Biosafety in Microbiological and Biomedical Laboratories" publication (www.cdc.gov, published by the CDC in the USA, describes BSL-2 handling) and the "Laboratory Biosafety Guidelines" publication (www.phac-aspc.gc.ca, published by the Centre for Emergency Preparedness and Response in Canada) for more information on safe handling of various organisms and the physical requirements for facilities that work with them.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
If you're interested in stable integration and selection, choose the lentiviral system. We offer both a Directional TOPO (D-TOPO) and Gateway version of the kit to provide flexibility in the cloning of the gene of interest.
If you're looking for transient gene expression, choose the adenoviral system. We offer the Gateway cloning method for this product. It should be noted, however, that gene expression from both systems is typically detected within 24-48 hours of transduction, so both systems can be used for experiments of a transient nature. The main difference is that lentivirus integrates into the host genome and adenovirus does not. Higher viral titers are achieved with the adenovirus.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
No, neither lentivirus nor adenovirus can take an insert as large as 9 Kb. Lentiviral packaging limits are around 6 kb and adenoviral packaging limits are around 7-7.5 kb. Above that, no virus is made.
For lentivirus, titers will generally decrease as the size of the insert increases. We have effectively packaged inserts of 5.2 kb with good titer (approx. 0.5 x 10^5 cfu/mL). The size of the wild-type HIV-1 genome is approximately 10 kb. Since the size of the elements required for expression from pLenti vectors add up to approximately 4-4.4 kb, the size of your gene of interest should theoretically not exceed 5.6-6 kb for efficient packaging (see below for packaging limits for individual vectors).
pLenti4/V5-DEST vector: 6 kb
pLenti6/V5-DEST vector: 6 kb
pLenti6/V5/D-TOPO vector: 6 kb
pLenti6/UbC/V5-DEST vector: 5.6 kb
For adenovirus, the maximum packagable size is approximately 7-7.5 Kb (see below for packaging limits for individual vectors).
pAd/CMV/V5-DEST vector: 6 kb
pAd/PL-DEST vector: 7.5 kb
Prokaryotic mRNAs contain a Shine-Dalgarno sequence, also known as a ribosome binding site (RBS), which is composed of the polypurine sequence AGGAGG located just 5’ of the AUG initiation codon. This sequence allows the message to bind efficiently to the ribosome due to its complementarity with the 3’-end of the 16S rRNA. Similarly, eukaryotic (and specifically mammalian) mRNA also contains sequence information important for efficient translation. However, this sequence, termed a Kozak sequence, is not a true ribosome binding site, but rather a translation initiation enhancer. The Kozak consensus sequence is ACCAUGG, where AUG is the initiation codon. A purine (A/G) in position -3 has a dominant effect; with a pyrimidine (C/T) in position -3, translation becomes more sensitive to changes in positions -1, -2, and +4. Expression levels can be reduced up to 95% when the -3 position is changed from a purine to pyrimidine. The +4 position has less influence on expression levels where approximately 50% reduction is seen. See the following references:
- Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283-292.
- Kozak, M. (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196, 947-950.
- Kozak, M. (1987) An analysis of 5´-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125-8148.
- Kozak, M. (1989) The scanning model for translation: An update. J. Cell Biol. 108, 229-241.
- Kozak, M. (1990) Evaluation of the fidelity of initiation of translation in reticulocyte lysates from commercial sources. Nucleic Acids Res. 18, 2828.
Note: The optimal Kozak sequence for Drosophila differs slightly, and yeast do not follow this rule at all. See the following references:
- Romanos, M.A., Scorer, C.A., Clare, J.J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423-488.
- Cavaneer, D.R. (1987) Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res. 15, 1353-1361.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
Our vectors have not been completely sequenced. Your sequence data may differ when compared to what is provided. Known mutations that do not affect the function of the vector are annotated in public databases.
No, our vectors are not routinely sequenced. Quality control and release criteria utilize other methods.
Sequences provided for our vectors have been compiled from information in sequence databases, published sequences, and other sources.
Eukaryotic (and specifically mammalian) mRNA contains sequence information that is important for efficient translation. However, this sequence, termed a Kozak sequence, is not a true ribosome binding site, but rather a translation initiation enhancer. The Kozak consensus sequence is ACCAUGG, where AUG is the initiation codon. A purine (A/G) in position -3 has a dominant effect; with a pyrimidine (C/T) in position -3, translation becomes more sensitive to changes in positions -1, -2, and +4. Expression levels can be reduced up to 95% when the -3 position is changed from a purine to pyrimidine. The +4 position has less influence on expression levels where approximately 50% reduction is seen. See the following references:
Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283-292.
Kozak, M. (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196, 947-950.
Kozak, M. (1987) An analysis of 5´-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125-8148.
Kozak, M. (1989) The scanning model for translation: An update. J. Cell Biol. 108, 229-241.
Kozak, M. (1990) Evaluation of the fidelity of initiation of translation in reticulocyte lysates from commercial sources. Nucleic Acids Res. 18, 2828.
Note: The optimal Kozak sequence for Drosophila differs slightly, and yeast do not follow this rule at all. See the following references:
Romanos, M.A., Scorer, C.A., Clare, J.J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423-488.
Cavaneer, D.R. (1987) Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res. 15, 1353-1361.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.