Search Thermo Fisher Scientific
Search Thermo Fisher Scientific
All of us want to be absolute “gene-iuses”, but how do we get there? Absolute Gene-ius is a podcast in which we interview trailblazing scientists about their career journeys, lab stories, and groundbreaking digital PCR research.
This podcast is available via the following providers:
The season kicks off with a conversation with Dr. Sarah Philo, a recent PhD graduate working in wastewater-based epidemiology to track SARS-CoV-2 and antimicrobial resistance. We talk about the science, the joys of working with sewage samples, pandemic-era academics, career development, and more!
“In my free time I sing in a choir in Seattle, and have been singing with choirs since I was in undergrad.”
Sarah is a postdoctoral research associate with the Wastewater Surveillance for SARS-CoV-2 and Emerging Public Health Threats Research Coordination Network at the University of Notre Dame. She received her PhD in Environmental Health from the University of Washington School of Public Health in Seattle. Her PhD research focused on wastewater surveillance for SARS-CoV-2 and antimicrobial resistance, and she is excited to continue working in this area with the Wastewater Surveillance RCN. She has a BS in Biological Sciences from the University of Notre Dame (2016) and an MS in Global Health from Duke University (2018).
Wastewater-based epidemiology (WBE) has been around for a while and has been used to track drugs of abuse, chemical waste, and pathogens alike. It may not be the most glorious of samples to work with, but wastewater has proven to be a valuable way to do community-wide monitoring. The COVID pandemic brought new attention and focus to WBE once it was shown it could be used to detect the SARS-CoV-2 virus to alert public health officials to outbreaks, often before clinical symptoms presented.
Our gene-ius guest for this inaugural episode is Dr. Sarah Philo, a postdoctoral research associate with the Wastewater Surveillance for SARS-CoV-2 and Emerging Public Health Threats Research Coordination Network at the University of Notre Dame. In our conversation, Sarah talks about how she found this area of research and the “joys” of working with wastewater samples. We learn about how she and her team have used both qPCR and dPCR to detect and quantify SARS-CoV-2 and antimicrobial resistance genes in wastewater.
The conversation also touches on several other interesting and informative topics that include a “one health” approach to public health, the importance of teamwork in academics, considerations when selecting a graduate research program, the importance of passion in science, and how science is the “punk rock” discipline within academia. Join us for this fun start of the series and this first season!
For this episode we keep things in house with Marcia Slater. Her more than 20 years of experience in PCR are evident in how well she covers the history of power of digital PCR. Join for some dPCR fundamentals, the ever-present Gene-ius gems on career development, and stories about alpaca farming!
“I own a farm called Perkiomen Creek Ranch. Note the initials: PCR. Yeah, that was on purpose. ”
Marcia Slater is a Senior Technical Specialist for real-time PCR and digital PCR at Thermo Fisher Scientific. Over the past 26 years, Marcia has held various technical roles with Applied Biosystems/Life Technologies/ThermoFisher Scientific. Her passion is PCR, especially qPCR and dPCR and she has trained many scientists on these technologies. She was awarded a patent for using qPCR for HLA typing in 2007. Prior to joining Applied Biosystems, she was a research scientist at the Schering-Plough Research Institute (now Merck) in Kenilworth NJ. She holds a BS from Penn State and MS from Rutgers.
The details of what make digital PCR (dPCR) different from real-time, or quantitative PCR (qPCR) are relatively simple but not always explained very well. Likewise, it’s not always clear which use cases are a good fit for dPCR, and which others simply don’t require the power of dPCR. The power of digital PCR is real, if you understand it.
In this episode we enlist Marcia Slater, a self-described “PCR guru” to explain digital PCR and its power. She covers the basic differences between dPCR and qPCR and then delves into the details of where dPCR derives its power and where it shines. With over 20 years’ experience in helping customers troubleshoot PCR, Marcia makes is easy to understand key terms and concepts related to dPCR, including:
Marcia also covers some great examples of where the absolute quantification of dPCR is a great fit and how it’s even used to qualify and quantify standards for qPCR. Multiplexing and how its used to do molecular integrity evaluations for gene therapy applications is also discussed.
As always with the Gene-ius series, you’ll also get to learn about more than Marcia’s science chops. We learn about her unlikely career path from growing up on a livestock farm to her storied role in helping produce “data so beautiful it should be framed.” We even get into her rediscovered love of raising animals, including her beloved panda alpaca with a name you cannot forget!
Come meet Patrick Hanington and learn about his work in parasitology. We talk about how dPCR is advancing his team’s work in monitoring public and recreational waters for parasites, including schistosomes, which cause swimmer’s itch. You’ll also get some great career advice, funny sample-collection stories, and some unexpected movie references and recommendations.
"A substantial portion of my research group works on parasites that require snails to complete their life cycle. To study many of these parasites, we maintain a snail facility in our lab. This room is often the highlight for any visitors to our lab space. I find snails fascinating and name them as my favourite animal when my 6-year old daughter asks. However, slugs, which are close relatives of snails, are among my most reviled animals - to the point where I shiver just thinking about them (especially the larger ones). I really can’t explain why the shell makes the difference."
Patrick is an associate professor in the School of Public Health at the University of Alberta. He is a trained parasitologist and immunologist, and his research focuses on studying the interface between animals, parasites/pathogens, and freshwater environments. This research often focuses on understanding three aspects of biology: the specific interactions underpinning host and parasite/pathogen compatibility, how host and parasite populations influence each other within a freshwater ecosystem, and how species invasions can disrupt the balance between hosts and parasites. Patrick and his research group often approach these topics using multiple approaches that combine large-scale field surveys with large-scale spatial and temporal studies, molecular biology and specific host-parasite association investigations. Patrick and his team have formed partnerships with the Government of Alberta, non-government organizations, industry, schools/educational groups, and community partners to undertake these ambitious studies. These partnerships have coalesced into an incredible collaboration that advances research objectives and our understanding of important health issues related to freshwater ecosystems.
Parasites may bet a bad rap overall, but they play a vital role in healthy ecosystems. In this episode, we focus on the role parasites play in freshwater ecosystems. Specifically, we’re talking about the role of avian schistosomes, a very interesting parasite that infects waterfowl, but that also uses snails as a host in its larval stage. Larvae also infect humans to cause what’s know as swimmer’s itch.
To guide this conversation we have Dr. Patrick Hanington, associate professor in the School of Public Health at the University of Alberta. As a self-described parasitologist and immunologist he and his team focus on developing multiplexed PCR-based tests to detect freshwater parasites, including avian schistosomes. Their work benefits locals in his area by monitoring pubic and recreational waters for swimmer’s itch outbreaks, but their work also serves as a model for informing human schistosome research, where Schistosomiasis is the second most prevalent disease worldwide, behind malaria.
In our conversation with Patrick we learn about how they design their assays, why they’re increasingly using dPCR instead of qPCR. Beyond the technical work, we get into how Patrick’s career path developed, how what he loves most about his job has changed and evolved over time, his lessons learned in the lab, and how his research and hobbies have blended over time. And because it’s Absolute Gene-ius, you know we keep it fun with some unexpected movie references and a bit of discussion about how science is represented in television and film.
This webinar will cover dPCR basics and the differences between dPCR and qPCR and provide an overview of the QuantStudio Absolute Q dPCR System.
Jordan Ruggieri, while not a self-proclaimed “gene-ius”, received his B.S. in Biological Sciences from Cal State Fullerton and his MBA from Cal State Monterey Bay. At Cal State Fullerton he served as a President’s Scholar and spent three years in a research lab studying manganese oxidation in bacteria for potential bioremediation purposes. He has spent ten years working in the biotechnology industry holding positions in both research & development and product marketing across the life science and clinical diagnostics markets. Jordan is currently a Regional Marketing Manager at Thermo Fisher Scientific overseeing the digital PCR product line. He loves telling stories about how scientists use these technologies for incredible applications that enable positive change across the globe. Jordan is a nerd at heart and loves to read, his favorite series being The Wheel of Time, The Stormlight Archive, and The Lord of the Rings.
Cassie McCreary, while also not a self-proclaimed “gene-ius,” comes from eclectic educational and professional backgrounds. She received her B.A. in history with a minor in forensic studies and her M.A. in Emerging Media from Loyola University Maryland, additionally pursuing advanced studies in forensic DNA analysis and toxicology. Most recently, she completed her M.S. in Biotechnology from the Johns Hopkins University. Cassie’s career began in clinical research, carrying out research protocols focusing on studies in the pediatric neurology, pediatric anesthesiology, and OB-GYN spaces. After working in a clinical setting, she ultimately decided to tap into her creative side, working in social media marketing for a clinical research organization, traditional and digital marketing in the chemicals industry, and most currently as a Digital Marketing Manager in the Genetic Sciences Division of Thermo Fisher Scientific. In her spare time, she enjoys pursuing an equally eclectic collection of hobbies: hiking with her husband and two dogs (Donut, a corgi, and Boo, a labradoodle), biking, playing the guitar, horseback riding, reading, podcasting (of course), and is looking to add Brazilian Jiujitsu to this list soon!
LinkedIn profile ›
For Research Use Only. Not for use in diagnostic procedures.