Ion Torrent™ semiconductor sequencing technology
is as simple as it is fast.


Leveraging Consumer Technology for scientific breakthroughs


Ion Torrent™ technology directly translates chemically encoded information (A, C, G, T) into digital information (0, 1) on a semiconductor chip. This approach marries simple chemistry to proprietary semiconductor technology; it's Watson meets Moore. The result is a sequencing technology that is simpler, faster, more cost effective and scalable than any other technology available. The semiconductor has transformed every industry it's touched. Just as the microprocessor enabled desktop computing to displace the mainframe, semiconductor technology will inevitably democratize sequencing, putting it within the reach of any lab or clinic.

In nature, when a nucleotide is incorporated into a strand of DNA by a polymerase, a hydrogen ion is released as a byproduct.


If there are two identical bases on the DNA strand, the voltage will be double, and the chip will record two identical bases. Because this is direct detection—no scanning, no cameras, no light—each nucleotide incorporation is recorded in seconds.

The semiconductor will inevitably transform the life sciences, just as it has transformed every other industry it has touched. By creating a direct connection between chemical and digital information, Ion Torrent technology will democratize research, providing a fast, simple, scalable sequencing solution that every lab can afford. Eventually, Ion Torrent technology will also be able to provide diagnostics that are less expensive and more reliable, improving human health around the world.


Here’s how the technology is used to call a base: If a nucleotide, for example a C, is added to a DNA template and is then incorporated into a strand of DNA, a hydrogen ion will be released. The charge from that ion will change the pH of the solution, which can be detected by our proprietary ion sensor. Our sequencer—essentially the world's smallest solid-state pH meter—will call the base, going directly from chemical information to digital information.


The Ion Personal Genome Machine™ (PGM™) sequencer then sequentially floods the chip with one nucleotide after another. If the next nucleotide that floods the chip is not a match, no voltage change will be recorded and no base will be called.