Search Thermo Fisher Scientific
Search Thermo Fisher Scientific
Atom probe tomography enables atomic-resolution characterization of sample structure and elemental composition. This technique, which removes individual atoms from the sample surface (as ions) and measures their identity with a mass spectrometer, requires that the sample is in the form of a sharp tip to eject the ions for analysis. Focused ion beam (FIB) milling is well suited for this particular type of sample preparation as it can remove highly precise quantities of material. When coupled with a scanning electron microscope (SEM), as in DualBeam (FIB-SEM) instruments, the milling process can be visually monitored in real-time.
The fundamental criteria for a good APT sample are:
Thermo Scientific DualBeam instruments offer gallium FIB and plasma FIB (PFIB) milling for high-quality APT sample preparation. With the Thermo Scientific Helios Hydra DualBeam, a range of plasma ion species (oxygen, argon, nitrogen, or xenon) can uniquely be applied within the same instrument to determine which ion is best suited for milling a given sample. The process can also be automated with Thermo Scientific Autoscript Software, greatly reducing the burden of repetitive sample preparation.
The shrinking of semiconductor devices means smaller and smaller architectures are used in their design process, requiring higher resolution characterization. Atom probe tomography (APT) is increasingly used in advanced semiconductor analysis, as it enables detection, visualization, and analysis of these structures, along with elemental composition, at very low concentrations.
However, APT requires the preparation of high-quality, high-yield, and site-specific atom probe tips. This can be a daunting challenge due to the strict criteria applied to these tips. For example, the needle-shaped specimen needs a tip radius of less than 50 nm, a uniform circular cross-section to produce a radially symmetric electric field, correct taper angle for evaporation events to occur, and minimal damage introduced to the tip during preparation.
Focused ion beam (FIB) milling using DualBeam (combined FIB and scanning electron microscopy) technology is ideally suited for this particular type of preparation, as milling allows for highly precise quantities of material to be removed while being monitored in real time. Thermo Fisher Scientific has introduced Thermo Scientific Atom Probe LX Software and the Thermo Scientific Helios 5 FX DualBeam, brand new sample preparation technology that automates the atom probe tip milling process, making it reliable, precise, and repeatable.
These high-quality tips allow you to detect phenomena such as etch-related impurities (e.g. fluorides, chlorides) at interfaces, hydrogen distribution within features, heavy metal diffusion into the gate oxide, and lateral diffusion of dopants in epi-layers. See the Helios 5 FX DualBeam product page for more information.
Novel materials are investigated at increasingly smaller scales for maximum control of their physical and chemical properties. Electron microscopy provides researchers with key insight into a wide variety of material characteristics at the micro- to nano-scale.
Innovation starts with research and development. Learn more about solutions to help you understand innovative structures and materials at the atomic level.
Complex semiconductor device structures result in more places for defects to hide. Learn more about failure analysis solutions to isolate, analyze, and repair defects.
Many factors impact yield, performance, and reliability. Learn more about solutions to characterize physical, structural, and chemical properties.
Novel architectures and materials pose new challenges. Learn how to pinpoint faults and characterize materials, structures, and interfaces.
Battery development is enabled by multi-scale analysis with microCT, SEM and TEM, Raman spectroscopy, XPS, and digital 3D visualization and analysis. Learn how this approach provides the structural and chemical information needed to build better batteries.
Effective production of metals requires precise control of inclusions and precipitates. Our automated tools can perform a variety of tasks critical for metal analysis including; nanoparticle counting, EDS chemical analysis and TEM sample preparation.
Geoscience relies on consistent and accurate multi-scale observation of features within rock samples. SEM-EDS, combined with automation software, enables direct, large-scale analysis of texture and mineral composition for petrology and mineralogy research.
Catalysts are critical for a majority of modern industrial processes. Their efficiency depends on the microscopic composition and morphology of the catalytic particles; EM with EDS is ideally suited for studying these properties.
As semiconductor devices shrink and become more complex, new designs and structures are needed. High-productivity 3D analysis workflows can shorten device development time, maximize yield, and ensure that devices meet the future needs of the industry.
To ensure optimal system performance, we provide you access to a world-class network of field service experts, technical support, and certified spare parts.