48ab - Appl/Samples/Products/Resources/Contact

Atom probe tomography enables atomic-resolution characterization of sample structure and elemental composition. This technique, which removes individual atoms from the sample surface (as ions) and measures their identity with a mass spectrometer, requires that the sample is in the form of a sharp tip to eject the ions for analysis. Focused ion beam (FIB) milling is well suited for this particular type of sample preparation as it can remove highly precise quantities of material. When coupled with a scanning electron microscope (SEM), as in DualBeam (FIB-SEM) instruments, the milling process can be visually monitored in real-time.

APT sample preparation with a PFIB DualBeam
APT sample rough milling and lift-out with a plasma focused ion beam (PFIB). Images (a-b) are SEM of the sample rough milled by a 2.5 µA FIB with free J-cut completed on one side and bottom. Images (c-f) are FIB images of the lift-out process, with one lift for multiple APT samples.

The fundamental criteria for a good APT sample are:

  • Site-specific and non site-specific sample preparation capability
  • Needle-shaped specimen with tip radius typically less than 50 nm
  • Uniform, circular cross-section of the tip to produce a radially symmetric electric field
  • Correct taper angle for significant evaporation events to occur
  • Minimal damage introduced to the tip during specimen preparation (apex region of needle should represent original sample in terms of microstructure and composition)

Thermo Scientific DualBeam instruments offer gallium FIB and plasma FIB (PFIB) milling for high-quality APT sample preparation. With the Thermo Scientific Helios Hydra DualBeam, a range of plasma ion species (oxygen, argon, nitrogen, or xenon) can uniquely be applied within the same instrument to determine which ion is best suited for milling a given sample. The process can also be automated with Thermo Scientific Autoscript Software, greatly reducing the burden of repetitive sample preparation.

Atom Probe Semiconductor Sample Preparation

Atom probe tomography sample
Thinned, site-specific sample ready for atom probe tomography (APT) data collection.

The shrinking of semiconductor devices means smaller and smaller architectures are used in their design process, requiring higher resolution characterization. Atom probe tomography (APT) is increasingly used in advanced semiconductor analysis, as it enables detection, visualization, and analysis of these structures, along with elemental composition, at very low concentrations.

However, APT requires the preparation of high-quality, high-yield, and site-specific atom probe tips. This can be a daunting challenge due to the strict criteria applied to these tips. For example, the needle-shaped specimen needs a tip radius of less than 50 nm, a uniform circular cross-section to produce a radially symmetric electric field, correct taper angle for evaporation events to occur, and minimal damage introduced to the tip during preparation.

Focused ion beam (FIB) milling using DualBeam (combined FIB and scanning electron microscopy) technology is ideally suited for this particular type of preparation, as milling allows for highly precise quantities of material to be removed while being monitored in real time. Thermo Fisher Scientific has introduced Thermo Scientific Atom Probe LX Software and the Thermo Scientific Helios 5 FX DualBeam, brand new sample preparation technology that automates the atom probe tip milling process, making it reliable, precise, and repeatable.

These high-quality tips allow you to detect phenomena such as etch-related impurities (e.g. fluorides, chlorides) at interfaces, hydrogen distribution within features, heavy metal diffusion into the gate oxide, and lateral diffusion of dopants in epi-layers. See the Helios 5 FX DualBeam product page for more information. 


Resources

Applications

Fundamental Materials Research_R&D_Thumb_274x180_144DPI

Fundamental Materials Research

Novel materials are investigated at increasingly smaller scales for maximum control of their physical and chemical properties. Electron microscopy provides researchers with key insight into a wide variety of material characteristics at the micro- to nano-scale.

 

pathfinding_thumb_274x180_144dpi

Semiconductor Pathfinding and Development

Advanced electron microscopy, focused ion beam, and associated analytical techniques for identifying viable solutions and design methods for the fabrication of high-performance semiconductor devices.

Semiconductor Failure Analysis

Semiconductor Failure Analysis

Increasingly complex semiconductor device structures result in more places for failure-inducing defects to hide. Our next-generation workflows help you localize and characterize subtle electrical issues that affect yield, performance, and reliability.

physical_characterization_thumb_274x180_144dpi

Physical and Chemical Characterization

Ongoing consumer demand drives the creation of smaller, faster, and cheaper electronic devices. Their production relies on high-productivity instruments and workflows that image, analyze, and characterize a broad range of semiconductor and display devices.


Samples


Battery Research

Battery development is enabled by multi-scale analysis with microCT, SEM and TEM, Raman spectroscopy, XPS, and digital 3D visualization and analysis. Learn how this approach provides the structural and chemical information needed to build better batteries.

Learn more ›


Metals Research

Effective production of metals requires precise control of inclusions and precipitates. Our automated tools can perform a variety of tasks critical for metal analysis including; nanoparticle counting, EDS chemical analysis and TEM sample preparation.

Learn more ›


Geological Research

Geoscience relies on consistent and accurate multi-scale observation of features within rock samples. SEM-EDS, combined with automation software, enables direct, large-scale analysis of texture and mineral composition for petrology and mineralogy research.

Learn more ›


Catalysis Research

Catalysts are critical for a majority of modern industrial processes. Their efficiency depends on the microscopic composition and morphology of the catalytic particles; EM with EDS is ideally suited for studying these properties.

Learn more ›


Semiconductor Materials and Device Characterization

As semiconductor devices shrink and become more complex, new designs and structures are needed. High-productivity 3D analysis workflows can shorten device development time, maximize yield, and ensure that devices meet the future needs of the industry.

Learn more ›


Style Sheet for Komodo Tabs

Products

Style Sheet for Instrument Cards Original

Helios 5 Laser PFIB System

  • Fast, millimeter-scale cross sections
  • Statistically relevant deep subsurface and 3D data analysis
  • Shares all capabilities of the Helios 5 PFIB platform

Helios Hydra DualBeam

  • 4 fast switchable ion species (Xe, Ar, O, N) for optimized PFIB processing of a widest range of materials
  • Ga-free TEM sample preparation
  • Extreme high resolution SEM imaging

Helios 5 DualBeam

  • Fully automated, high-quality, ultra-thin TEM sample preparation
  • High throughput, high resolution subsurface and 3D characterization
  • Rapid nanoprototyping capabilities

Helios 5 PFIB DualBeam

  • Gallium-free STEM and TEM sample preparation
  • Multi-modal subsurface and 3D information
  • Next-generation 2.5 μA xenon plasma FIB column

Scios 2 DualBeam

  • Full support of magnetic and non-conductive samples
  • High throughput subsurface and 3D characterization
  • Advanced ease of use and automation capabilities

AutoScript 4

  • improved reproducibility and accuracy
  • Unattended, high throughput imaging and patterning
  • Supported by Python 3.5-based scripting environment

Style Sheet to change H2 style to p with em-h2-header class

Contact us

Style Sheet for Support and Service footer
Style Sheet for Fonts
Style Sheet for Cards

Electron microscopy services for
the materials science

To ensure optimal system performance, we provide you access to a world-class network of field service experts, technical support, and certified spare parts.